
W
eb

si
te

 S
ec

ur
it

y

44 	 Published by the IEEE Computer Society	 1089-7801/12/$31.00 © 2012 IEEE� IEEE INTERNET COMPUTING

CAPTCHA Design
Color, Usability, and Security

Ahmad El Ahmad
and Jeff Yan
Newcastle University, UK

Wai-Yin Ng
Chinese University of Hong Kong

Most user interfaces use color, which can greatly enhance their design.

Because the use of color is typically a usability issue, it rarely causes security

failures. However, using color when designing CAPTCHAs, a standard security

technology that many commercial websites apply widely, can have an impact on

usability and interesting but critical implications for security. Here, the authors

examine some CAPTCHAs to determine whether their use of color negatively

affects their usability, security, or both.

C olor plays a major role in increas-
ing usability in systems ranging
from TV remote controls (whose

buttons are highlighted in different col-
ors to make them easy to spot) to com-
plicated GUIs (where users’ navigation
from one area to another is effectively
guided by different colors). When used
properly, color can greatly enhance user
interface designs.1 Color in interfaces is
thus typically a usability issue and has
rarely led to any security failures.

Here, however, we examine the use
of color in CAPTCHAs (Completely
Automated Public Turing Test to Tell
Computers and Humans Apart),2 now
a standard security mechanism that
many commercial websites deploy to
address spam and other online abuses.
We focus on text-based CAPTCHAs,
which are the most common and which
rely on sophisticated distortion of text
images, rendering them unrecognizable
to current pattern-recognition algo-
rithms but recognizable to human eyes.
Some of our discussion is also relevant

to other types of CAPTCHAs (such as
image-based schemes that typically
require users to perform an image-
recognition task), which we discussed in
detail in our previous technical report.3

A good CAPTCHA must be human-
friendly and robust enough to resist
computer programs that attackers write
to automatically pass CAPTCHA tests.
To strike the right balance between
usability and security, designers must
address many issues other than color,
but these are discussed elsewhere.4
Solving the accessibility issues that
CAPTCHAs cause — for instance, by
exploring alternatives5 — is also impor-
tant and of practical relevance, but is
beyond this article’s scope (although
our discussion can help improve acces-
sibility by identifying inappropriate
use of color in deployed CAPTCHAs).

CAPTCHAs have commonly used
color for the following reasons:

•	 Color is a strong attention-getting
mechanism.

IC-16-02-Yan.indd 44 2/11/12 2:30 PM

CAPTCHA Design

MARCH/APRIL 2012� 45

•	 It’s appealing and can make CAPTCHA chal-
lenges interesting.

•	 It can facilitate recognition, comprehension,
and positive affect.

•	 Color can make CAPTCHA images compat-
ible with webpage color so they look less
intrusive.6

•	 Occasionally, color can provide variation to
fit different user preferences — for example,
a CAPTCHA service might let users choose
their favorite color configurations.7

•	 Some CAPTCHAs also use colors to defend
against automated attacks.

Here, we present some case studies showing
that using color can actually reduce CAPTCHA
usability, has negatively affected security, or is
problematic in terms of both usability and secu-
rity. These case studies cover both colorful and
monochromatic CAPTCHAs. We look at CAPT-
CHAs from the earliest days to the latest designs
and examine both simple and more complex
attacks. Overall, these case studies constitute
a cohesive and fairly comprehensive investiga-
tion of color use, leading to valuable lessons for
designing robust and usable CAPTCHAs.

Color CAPTCHAs
Let’s first examine several colorful CAPTCHAs.

Gimpy-r, designed at Carnegie Mellon Uni-
versity, was a well-known early CAPTCHA that
used colorful challenges;2 Figure 1a shows four
examples. Yahoo deployed this scheme to pro-
tect its online services. The dominant color of
distorted texts in each challenge image always
had the lowest intensity among all colors used,
and this color (often black) never appeared in the
background. This made it easy for a computer
program to extract the challenge text. Figure 1b
shows the text extracted by our automatic pro-
gram, which looks only for black pixels.

The images in Figures 1a and 1b show what
the challenges look like for humans and com-
puters, respectively; they provide just about the
same level of security. The colorful background
is useless for security — in fact, it can confuse
people and thus decrease the scheme’s usability.

In general, breaking a CAPTCHA (in the
sense of writing computer programs that auto-
matically solve the test) involves segmentation —
locating individual characters in the right order —
and recognition — recognizing which character
is which.

We had 100 percent success for segmenta-
tion with the Gimpy-r images using color filling
segmentation (CFS).8 CFS aims to detect every
connected large component, which often corre-
sponds to each individual character (or stroke).
Our algorithm first detects a black pixel in the
image in Figure 1b and then traces all its black
neighbors until all the connecting black pixels
are traversed — that is, a component is identified
and segmented. Next, the algorithm locates a
black pixel outside the area of the already iden-
tified components and starts another traversal
to identify the next component. This continues
until the algorithm has identified all black com-
ponents. This method is effectively like using a
distinct color to flood each connected compo-
nent. In the end, each black component is high-
lighted with a distinct color, and the number of
colors used is the number of black components
in the image.

After segmentation, applying standard tech-
niques to recognize each individual character
at a high speed is trivial. For example, a neu-
ral network achieved a success rate of roughly
95 percent for recognizing individual charac-
ters heavily distorted in different ways.9 So, we
were able to break Gimpy-r with an overall suc-
cess rate of approximately 81 percent (≈100%
* 0.954). A common design goal for CAPTCHA
security is to prevent a bot from achieving a
success rate of more than 0.01 percent.6 Clearly,
if we can reduce breaking a CAPTCHA to the
problem of recognizing individual characters in
its challenge, then the CAPTCHA is effectively
broken.

We observed the Gimpy-r design flaw in
EZ-gimpy (see Figures 1c and 1d), another

Figure 1. Two early CAPTCHAs (deployed around
2001). We took (a) the original challenge for
Gimpy-r and (b) extracted the text using our
automatic program. We did the same for (c) the
original challenge for EZ-gimpy, (d) extracting
only the black pixels. Both the original and
text-extracted images provide the same level
of security.

(a) (b) (c) (d)

IC-16-02-Yan.indd 45 2/11/12 2:30 PM

Website Security

46	 www.computer.org/internet/� IEEE INTERNET COMPUTING

well-known early CAPTCHA designed by the
same CMU team and also deployed by Yahoo in
the past.

Gabriel Moy and his colleagues developed
distor tion-estimation techniques to break
Gimpy-r (78 percent success) and EZ-Gimpy
(99 percent success).10 Greg Mori and Jitendra Malik
have broken EZ-Gimpy (92 percent success)
using sophisticated object-recognition algo-
rithms.11 However, both works focused more
on advancing computer vision algorithms
in recognizing objects than on identifying
CAPTCHA design flaws. The methodology we
demonstrated — extracting challenge text, seg-
menting the text, and then recognizing individual

characters — is generic to CAPTCHA security
analysis but can also pinpoint design flaws. So,
we use this methodology throughout the article.

Flaws similar to those found in Gimpy-r
have occurred in CAPTCHAs that use gray-
scale images, which have pixels of white, black,
and many shades of gray. An example is the
Securimage CAPTCHA (see Figure 2a) avail-
able from the open source CAPTCHA service
at www.phpcaptcha.org. By detecting all pixels
of the foreground color (white), we effectively
extracted all challenge characters (see Figure 2b).
We then automatically detected with 100 percent
success each individual character using the
CFS method. As such, we effectively broke
this scheme. On the other hand, in this case,
gray-scale images don’t appear to degrade
usability.

Another Securimage scheme (see Figure 2c)
uses random arcs to intersect and connect its
challenge characters to defend against seg-
mentation attacks. This scheme uses three col-
ors: white for the image background, lavender
for the challenge text, and blue for the arcs.
Because these colors are distinct, identifying
and removing the arc is trivial. We first iden-
tify (by distinct color) arc portions that are
outside the challenge text (that is, they don’t
intersect with the text) and remove them by
converting their color to the background white.
We then convert the remaining arc portions to
text color (see Figure 2d). Afterward, the CFS
method achieved 100 percent segmentation suc-
cess; existing character-recognition technology
can recognize the characters with a 95 percent
success rate.

To make challenges look interesting, some
CAPTCHAs generate images in which adja-
cent characters have distinct colors. The Cryp-
tographp CAPTCHA (available as a WordPress
plug-in and at www.captcha.fr) is such a scheme
(see Figure 3a). However, this design feature
turns out to be a fatal security mistake.

The original challenges used random shapes
such as circles and intersecting lines as noise.
However, removing such noise is trivial because
these shapes’ and lines’ thickness differs sig-
nificantly from that of characters in the images.
Figure 3b shows the images after noise removal.
Typically, segmenting overlapping characters is
difficult. The state of the art9 suggests that a text
CAPTCHA should rely on such segmentation-
resistant mechanisms to provide security.

Figure 2. Two Securimage CAPTCHAs. We can see (a) the first
scheme, which uses a gray-scale image and (b) the text our
automatic program extracted. (c) The second scheme uses random
arcs to intersect and connect its challenge characters, but
(d) we can still extract the text. Both the original images and those
extracted with our program provide the same level of security.
(These schemes were created in 2008; we broke them in 2009.)

(a) (c) (d)(b)

Figure 3. Color misuse in various CAPTCHAs. We can see (a) the
original Cryptographp challenges, (b) the challenges after
background noise removal, and (c) the final segmented results.
(d) Two FreeCap examples and (e) two LinkedIn examples have
similar security problems. (Cryptographp was created in 2006 and
FreeCap in 2003; we broke both in 2007, and LinkedIn in 2009.)

(a) (b) (c)

(d)

(e)

IC-16-02-Yan.indd 46 2/11/12 2:30 PM

CAPTCHA Design

MARCH/APRIL 2012� 47

However, because each character has a differ-
ent (dominant) color in this scheme, by picking
all pixels with the same color, we effectively
segmented overlapping characters, as Figure 3c
shows. We tested this method on 50 random
challenges generated by this Cryptographp
scheme and achieved 100 percent success for
segmentation. The average segmentation speed
was roughly 60 ms per challenge on a stan-
dard desktop computer. Any competent attacker
could thus bypass this scheme instantly.

We observed a similar mistake in FreeCap (see
Figure 3d), another popular CAPTCHA (avail-
able at www.puremango.co.uk/tag/captcha).
In this scheme, adjacent letters have different
colors, helping us segment touching and over-
lapping characters, which would otherwise be
much harder. Note that FreeCap’s designer is
security savvy: his previous work identified a
well-known attack in which simply re-using
a known challenge image’s session ID could
bypass some early CAPTCHAs.12

Finally, we observed the same mistake in
the latest CAPTCHA from LinkedIn, the popu-
lar social networking website (www.linkedin.
com). For the LinkedIn examples in Figure 3e,
we first applied posterization, which reduces the
number of colors in the images. We then located
the region containing overlapping or touching
characters. Next, we easily separated “U” from
“V” and “L” from “H” by picking up all pixels of
the same color in the concerned region to form
a character.

BotBlock, available at http://chimetv.com/
tools/botblock, demonstrates that misusing
complex color combinations in a CAPTCHA
can cause both usability and security prob-
lems. This scheme, as shown in Figure 4a, uses
random letters that appear in different places
in a given challenge. The scheme introduces a
sophisticated color-management method: back-
grounds comprise multiple color blocks of ran-
dom shapes, and foreground colors also occur
in the background.

However, this color scheme often made it
hard for people with normal vision (includ-
ing us) to recognize challenge texts, and even
harder for vision-impaired people, such as those
with color blindness, to do so. (Color blindness
affects roughly 8 percent of adult males and
1 percent of adult females in North America and
Europe, and the most common form is difficulty
discriminating between red and green.1)

Moreover, this scheme relied too much on
color for security. We tested 100 samples and
all were indeed resistant to the best optical
character-recognition program on the market.
Unfortunately, a design error made removing
all the complex background trivial: the scheme
has an exploitable color pattern for foreground
texts — that is, the same color occurs repeti-
tively. By looking for this pattern, we success-
fully extracted the challenge text in all samples
we tested. The scheme’s robustness is equivalent
only to that for the challenges Figure 4b shows,
which are trivial to decode.

For example, the letters in Figure 4b were
vulnerable to a “pixel count” attack we dis-
covered.13 That is, by counting the number of
foreground pixels in each character, we could
recognize most of the characters. For a few with
identical pixel counts, simply analyzing their
geometrical shapes allowed our algorithm to
tell them apart. Such simple attacks success-
fully broke all 100 random samples we tested.

Black and White CAPTCHAs
Let’s now look at two black and white text
CAPTCHAs: the f irst was until recently
deployed by Megaupload.com, one of the largest
file-sharing websites in the world; the other is
from BotDetect, a commercial CAPTCHA sys-
tem that claims a wide deployment by major
websites (see http://captcha.biz). We show that
such a simple combination of colors in CAPTCHAs
can still go wrong.

Figure 5a shows the Megaupload CAPTCHA,
whose key innovation was to combine two
mechanisms from early research8,14 that were

Figure 4. BotBlock CAPTCHA. We can see (a) the
original sample challenges and (b) challenge text
our automatic program extracted. Images in
(a) and (b) provide the same level of security. (Its
first deployment date is unknown, but we broke
this scheme in 2007.)

(a) (b)

IC-16-02-Yan.indd 47 2/11/12 2:30 PM

Website Security

48	 www.computer.org/internet/� IEEE INTERNET COMPUTING

already proven effective at increasing security.
The first mechanism makes characters overlap
and connect with each other; in general, cur-
rent computers aren’t good at segmenting con-
nected characters. The second mechanism uses
Gestalt psychology: although some portions of
each character are removed, humans can infer
the whole picture from only partial informa-
tion, whereas machines can’t. Combining these
mechanisms was clever and easy to imple-
ment: the Megaupload CAPTCHA connected
each character (in black) with its neighbors
and changed the connecting areas to the back-
ground color (white). (The latter is effectively
an XOR operation.)

It appears that using Gestalt psychology also
contributes to this CAPTCHA’s usability: once
you get used to the scheme, it’s reasonably easy
to read which character is which with accu-
racy. The usability improvement this feature
introduced is more apparent when we compare
images in Figure 5a with those in Figure 5b —
the latter are the same images but with the
Gestalt feature turned off.

The segmentation attack we used on this
CAPTCHA works as follows. We first used the
CFS method to extract black components, which
define most of each character’s actual content
and are never shared with adjacent characters.
Figure 6b shows the result of extracting all
black components, each highlighted with a dif-
ferent color for illustrative purposes.

The second step of our attack was to identify
and extract shared white components, which are
the connecting areas between adjacent charac-
ters. We first applied the CFS method to detect
all white components. Then, we excluded the
main image background (that is, the outside of
the image text), which is the largest white com-
ponent in terms of pixel count; Figure 6c shows
the remaining white components. With some
heuristics, we also excluded, with a high suc-
cess rate, loops that occur normally as part of
a character’s shape, such as those found in “A,”
“Q,” and “6,” and loops that occur when con-
necting characters together. For example, the
connection between “V” and “U” in the second
example in Figure 5a created a connection loop.
Figure 6d shows that we successfully identified
all the shared white components.

The final step was to put the shared white
components in the right location to merge with
corresponding black components to form each

Figure 5. The Megaupload CAPTCHA. We can
see (a) four example challenges, with the correct
answers being NAQ6, VUX6, GMW7, and ZYB9,
respectively. In (b), we see the same challenges
but with the Gestalt feature turned off. (This
scheme’s first deployment date is unknown, but
we broke it in 2009.)

(a) (b)

Figure 6. A segmentation attack on the Megaupload
CAPTCHA. We took (a) an original image and
(b) extracted all the black components (removing a
small amount of black noise). We then (c) extracted
all the white components except the main image
background and (d) extracted the shared white
components by removing loops. Finally, we
(e) merged black and shared white components
to form individual characters.

(a) (b)

(c)

(d)

(e)

IC-16-02-Yan.indd 48 2/11/12 2:30 PM

CAPTCHA Design

MARCH/APRIL 2012� 49

complete character. We know that n number
of characters when connected horizontally
should typically produce n – 1 connection areas
between them, and that shared white com-
ponents that are juxtaposed vertically must
belong to the same connection area. So, in an
example that has only four characters, as in
Figure 6,

•	 all shared white components inside the first
connection area and all black components
to its left will be merged to form the first
character;

•	 all shared white components inside the first
and second connection areas and all black
components between them will be merged to
form the second character;

•	 all shared white components inside the sec-
ond and third connection areas and all black
components between them will be merged to
form the third character; and

•	 all shared white components inside the third
connection area and all black components to
the area’s right will be merged to form the
fourth character.

Finally, we converted the color of merged
components to black, and kept individual
characters away from each other horizontally.
Figure 6e shows the final segmented result.

Our attack achieved a segmentation success
rate of more than 78 percent; it took roughly
120 ms on average to segment each challenge on
a standard desktop computer. This implies that
we could break the Megaupload CAPTCHA
(using segmentation and then recognition)
with an overall success rate of 63.7 percent
(≈78.25% * 0.954). Details of our attack are avail-
able elsewhere.15

The BotDetect CAPTCHA that we examine is
a “chess scheme” according to its designers. As
Figure 7a shows, this scheme is effectively like
embedding characters within a chess board. As
each character is divided into numerous com-
ponents, either black or white, and all the char-
acters are mixed and connected with the chess
board, the designers expect that automated pro-
grams will fail in extracting and recognizing
the embedded characters. However, a simple
attack works as follows.

We first detect each chess box. If the major-
ity of pixels in a box are black, we reverse all
the pixels that are originally black to white, and

the pixels that are originally white, if any, to
black. If the majority of pixels in the box are
white, we do nothing. Figure 7b shows that
our automated program successfully extracted
all the characters. Locating and recogniz-
ing each character is trivial, so the scheme is
broken.

Lessons Learned
Using color in CAPTCHAs can be tricky. Many
CAPTCHAs, ranging from the earliest schemes
to the latest design, and including the widely
used LinkedIn, Megaupload, and BotDetect
schemes as well as some relatively less-known
designs, have had fatal security vulnerabilities
due to their imprudent use of color. Using com-
plex or fancy color schemes has raised usability
concerns as well. It is far more difficult than
it appears, for instance, to tell what kind of
color images would cause problems for color-
blind people, given the various types of color
blindness.

We can summarize our common method for
attacking CAPTCHAs into the following proce-
dure: separating foreground from background;
identifying connected components in the fore-
ground and, when necessary, separating the
connected components into individual charac-
ters; and subsequently recognizing individual
characters. We can thus derive the following
guidelines for using color:

•	 Uniformity in the foreground or background
reduces resistance to segmentation attacks
in general. A good security design principle
is minimal uniformity in the foreground
and background, with a controlled cost for
readability.

•	 Contrast between foreground and background,
or contrast among foreground characters, also
reduces resistance to segmentation attacks.

Figure 7. A BotDetect CAPTCHA. We took (a) sample challenges
and (b) extracted the challenge text using our automated program.
(This scheme was created in 2006; we broke it in 2009.)

(a) (b)

IC-16-02-Yan.indd 49 2/11/12 2:30 PM

Website Security

50	 www.computer.org/internet/� IEEE INTERNET COMPUTING

For this reason, coloring that increases such
contrasts might be undesirable.

•	 Perceptually connected but physically dis-
connected components are another good
security design principle; however, coloring
might enhance or destroy perceptual group-
ing with security consequences. So, a care-
ful evaluation of the end design’s security is
essential.

However, engineering a CAPTCHA that entirely
relies on color arrangement to provide rea-
sonable security and usability simultaneously
doesn’t appear to be easy. Instead, we consider
this an open problem.

To avoid the potentially complicated conse-
quences of usability and security, a text CAPT-
CHA should use a simple color scheme; using
color should aim at increasing a CAPTCHA’s
usability rather than its security. In particular,
a CAPTCHA should rely on better-understood
segmentation-resistant mechanisms,8 rather
than complex color management, to provide
security.

R ecent versions of several major CAPTCHAs
have adopted these lessons and don’t use

complex color schemes:

•	 Microsoft uses a simple color scheme in
which the foreground (that is, the challenge
text) is dark blue and the background light
gray.

•	 Google uses a single color (green, red, or
blue) for all text and a white background.

•	 Yahoo uses black and white only.
•	 reCAPTCHA (http://recaptcha.net) also uses

black and white only (reCAPTCHA is the lat-
est design from the same team that invented
Gimpy-r and EZ-gimpy).

The well-known “Las Vegas effect” on using
color in interface design suggests that using
fewer colors can be better than using too many.
It appears that this principle also applies to text
CAPTCHAs, but in this context, it isn’t only a
usability principle but also a security lesson.�

Acknowledgments
Part of this work was conducted while Jeff Yan was a vis-

iting faculty member in the Department of Information

Engineering, Chinese University of Hong Kong.

References
1.	 L.W. MacDonald, “Using Color Effectively in Computer

Graphics,” IEEE Computer Graphics & Applications,

vol. 19, no. 4, 1999, pp. 20–35.

2.	 L. von Ahn, M. Blum, and J. Langford, “Telling Humans

and Computer Apart Automatically,” Comm. ACM, vol. 47,

no. 2, 2004, pp. 56–60.

3.	 A.E. Ahmad and J. Yan, Colour, Usability and Security:

A Case Study, tech. report CS-TR 1203, School of

Computing Science, Newcastle Univ., May 2010; www.

cs.ncl.ac.uk/publications/trs/papers/1203.pdf.

4.	 J. Yan and A.E. Ahmad, “Usability of CAPTCHAs or

Usability Issues in CAPTCHA Design,” Proc. 4th Symp.

Usable Privacy and Security (SOUPS 08), ACM Press,

2008, pp. 44–52.

5.	 “Inaccessibility of CAPTCHA — Alternatives to Visual

Turing Tests on the Web,” W3C Working Group note,

23 Nov. 2005; www.w3.org/TR/turingtest.

6.	 K. Chellapilla et al., “Building Segmentation-Based

Human-Friendly Human Interaction Proofs,” Proc. 2nd

Int’l Workshop Human Interaction Proofs, LNCS 3517,

Springer, 2005, pp. 1–26.

7.	 T. Converse, “CAPTCHA Generation as a Web Service,”

Proc. 2nd Int’l Workshop Human Interactive Proofs

(HIP 05), LNCS 3517, Springer, 2005, pp. 82–96.

8.	 J. Yan and A.E. Ahmad, “A Low-Cost Attack on a

Microsoft CAPTCHA,” Proc. 15th ACM Conf. Computer

and Communications Security (CCS 08), ACM Press,

2008, pp. 543–554.

9.	 K. Chellapilla et al., “Computers Beat Humans at Single

Character Recognition in Reading-Based Human Interaction

Proofs,” Proc. 2nd Conf. Email and Anti-Spam (CEAS 05),

2005; www.ceas.cc/2005/papers/160.pdf.

10.	 G. Moy et al., “Distortion Estimation Techniques in

Solving Visual CAPTCHAs,” Proc. IEEE Computer Soc.

Conf. Computer Vision and Pattern Recognition (CVPR 04),

IEEE CS Press, 2004, pp. 23–28.

11.	G. Mori and J. Malik, “Recognizing Objects in

Adversarial Clutter: Breaking a Visual CAPTCHA,”

Proc. IEEE Computer Soc. Conf. Computer Vision and

Pattern Recognition (CVPR 03), IEEE CS Press, 2003,

pp. 134–141.

12.	 H. Yeend, “Breaking CAPTCHAs without Using OCR,” blog,

30 Nov. 2005, www.puremango.co.uk/cm_breaking_

captcha_115.php.

13.	 J. Yan and A.E. Ahmad, “Breaking Visual CAPTCHAs

with Naïve Pattern Recognition Algorithms,” Proc.

Ann. Computer Security Applications Conf. (ACSAC 07),

IEEE CS Press, 2007, pp. 279–291.

14.	 H.S. Baird, M.A. Moll, and S.Y. Wang, “A Highly

Legible CAPTCHA that Resists Segmentation Attacks,”

Proc. 2nd Int’l Workshop Human Interaction Proofs,

LNCS 3517, Springer, 2005, pp. 27–41.

IC-16-02-Yan.indd 50 2/11/12 2:30 PM

CAPTCHA Design

MARCH/APRIL 2012� 51

15.	 A.E. Ahmad, J. Yan, and L. Marshall, “The Robustness

of a New CAPTCHA,” Proc. 2010 European Workshop

System Security (EuroSec 10), ACM Press, 2010,

pp. 36–41.

Ahmad El Ahmad is a PhD student in the School of Computing

Science at Newcastle University, UK. His research inter-

ests include computer security, particularly the design

of secure and usable CAPTCHA systems. El Ahmad

has an MSc in computing science from Newcastle Uni-

versity. He’s a student member of IEEE. Contact him at

ahmad.salah-el-ahmad@ncl.ac.uk.

Jeff Yan is a lecturer in the School of Computing Science

at Newcastle University, UK, where he’s a founding

research director of the Center for Cybercrime and

Computer Security. His recent research includes sys-

tems security and human aspects of security. Yan has a

PhD in computer security from Cambridge University.

He held a visiting faculty post with the Department of

Information Engineering, Chinese University of Hong

Kong. He is the corresponding author for this article.

Contact him at jeff.yan@ncl.ac.uk.

Wai-Yin Ng is an associate professor in information engi-

neering at the Chinese University of Hong Kong. His

current research focus is in complex networks, a

young, vibrant science concerned with connectivity,

complexity, and emergent phenomena in both natural

and artificial systems. Ng has a PhD in control engi-

neering from the University of Cambridge. Contact him

at w.ng@cantab.net.

Selected CS articles and columns are also available
for free at http://ComputingNow.computer.org.

IEEE Pervasive Computing

seeks accessible, useful papers on the latest

peer-reviewed developments in pervasive,

mobile, and ubiquitous computing. Topics

include hardware technology, software

infrastructure, real-world sensing and

interaction, human-computer interaction,

and systems considerations, including

deployment, scalability, security, and privacy.

 Call
 for Articles

Author guidelines:

www.computer.org/mc/

pervasive/author.htm

Further details:

pervasive@computer.org

www.com
puter.o

rg/perv
asive

IC-16-02-Yan.indd 51 2/11/12 2:30 PM

