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Most user interfaces use color, which can greatly enhance their design. 

Because the use of color is typically a usability issue, it rarely causes security 

failures. However, using color when designing CAPTCHAs, a standard security 

technology that many commercial websites apply widely, can have an impact on 

usability and interesting but critical implications for security. Here, the authors 

examine some CAPTCHAs to determine whether their use of color negatively 

affects their usability, security, or both.

C olor plays a major role in increas-
ing usability in systems ranging 
from TV remote controls (whose 

buttons are highlighted in different col-
ors to make them easy to spot) to com-
plicated GUIs (where users’ navigation 
from one area to another is effectively 
guided by different colors). When used 
properly, color can greatly enhance user 
interface designs.1 Color in interfaces is 
thus typically a usability issue and has 
rarely led to any security failures.

Here, however, we examine the use 
of color in CAPTCHAs (Completely 
Automated Public Turing Test to Tell 
Computers and Humans Apart),2 now 
a standard security mechanism that 
many commercial websites deploy to 
address spam and other online abuses. 
We focus on text-based CAPTCHAs, 
which are the most common and which 
rely on sophisticated distortion of text 
images, rendering them unrecognizable 
to current pattern-recognition algo-
rithms but recognizable to human eyes. 
Some of our discussion is also relevant 

to other types of CAPTCHAs (such as 
image-based schemes that typically 
require users to perform an image- 
recognition task), which we discussed in 
detail in our previous technical report.3

A good CAPTCHA must be human-
friendly and robust enough to resist 
computer programs that attackers write 
to automatically pass CAPTCHA tests. 
To strike the right balance between 
usability and security, designers must 
address many issues other than color, 
but these are discussed elsewhere.4 
Solving the accessibility issues that 
CAPTCHAs cause — for instance, by 
exploring alternatives5 — is also impor-
tant and of practical relevance, but is 
beyond this article’s scope (although 
our discussion can help improve acces-
sibility by identifying inappropriate 
use of color in deployed CAPTCHAs). 

CAPTCHAs have commonly used 
color for the following reasons:

•	 Color is a strong attention-getting 
mechanism.
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•	 It’s appealing and can make CAPTCHA chal-
lenges interesting.

•	 It can facilitate recognition, comprehension, 
and positive affect.

•	 Color can make CAPTCHA images compat-
ible with webpage color so they look less 
intrusive.6

•	 Occasionally, color can provide variation to 
fit different user preferences — for example, 
a CAPTCHA service might let users choose 
their favorite color configurations.7

•	 Some CAPTCHAs also use colors to defend 
against automated attacks. 

Here, we present some case studies showing 
that using color can actually reduce CAPTCHA 
usability, has negatively affected security, or is 
problematic in terms of both usability and secu-
rity. These case studies cover both colorful and 
monochromatic CAPTCHAs. We look at CAPT-
CHAs from the earliest days to the latest designs 
and examine both simple and more complex 
attacks. Overall, these case studies constitute 
a cohesive and fairly comprehensive investiga-
tion of color use, leading to valuable lessons for 
designing robust and usable CAPTCHAs.

Color CAPTCHAs
Let’s first examine several colorful CAPTCHAs.

Gimpy-r, designed at Carnegie Mellon Uni-
versity, was a well-known early CAPTCHA that 
used colorful challenges;2 Figure 1a shows four 
examples. Yahoo deployed this scheme to pro-
tect its online services. The dominant color of 
distorted texts in each challenge image always 
had the lowest intensity among all colors used, 
and this color (often black) never appeared in the 
background. This made it easy for a computer 
program to extract the challenge text. Figure 1b 
shows the text extracted by our automatic pro-
gram, which looks only for black pixels.

The images in Figures 1a and 1b show what 
the challenges look like for humans and com-
puters, respectively; they provide just about the 
same level of security. The colorful background 
is useless for security — in fact, it can confuse 
people and thus decrease the scheme’s usability.

In general, breaking a CAPTCHA (in the 
sense of writing computer programs that auto-
matically solve the test) involves segmentation —  
locating individual characters in the right order —  
and recognition — recognizing which character 
is which. 

We had 100 percent success for segmenta-
tion with the Gimpy-r images using color filling 
segmentation (CFS).8 CFS aims to detect every 
connected large component, which often corre-
sponds to each individual character (or stroke). 
Our algorithm first detects a black pixel in the 
image in Figure 1b and then traces all its black 
neighbors until all the connecting black pixels 
are traversed — that is, a component is identified 
and segmented. Next, the algorithm locates a 
black pixel outside the area of the already iden-
tified components and starts another traversal 
to identify the next component. This continues 
until the algorithm has identified all black com-
ponents. This method is effectively like using a 
distinct color to flood each connected compo-
nent. In the end, each black component is high-
lighted with a distinct color, and the number of 
colors used is the number of black components 
in the image.

After segmentation, applying standard tech-
niques to recognize each individual character 
at a high speed is trivial. For example, a neu-
ral network achieved a success rate of roughly  
95 percent for recognizing individual charac-
ters heavily distorted in different ways.9 So, we 
were able to break Gimpy-r with an overall suc-
cess rate of  approximately 81 percent (≈100% 
* 0.954). A common design goal for CAPTCHA 
security is to prevent a bot from achieving a 
success rate of more than 0.01 percent.6 Clearly, 
if we can reduce breaking a CAPTCHA to the 
problem of recognizing individual characters in 
its challenge, then the CAPTCHA is effectively 
broken.

We observed the Gimpy-r design flaw in 
EZ-gimpy (see Figures 1c and 1d), another  

Figure 1. Two early CAPTCHAs (deployed around 
2001). We took (a) the original challenge for 
Gimpy-r and (b) extracted the text using our 
automatic program. We did the same for (c) the 
original challenge for EZ-gimpy, (d) extracting 
only the black pixels. Both the original and  
text-extracted images provide the same level  
of security.

(a) (b) (c) (d)
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well-known early CAPTCHA designed by the 
same CMU team and also deployed by Yahoo in 
the past.

Gabriel Moy and his colleagues developed 
distor tion-estimation techniques to break 
Gimpy-r (78 percent success) and EZ-Gimpy  
(99 percent success).10 Greg Mori and Jitendra Malik  
have broken EZ-Gimpy (92 percent success) 
using sophisticated object-recognition algo-
rithms.11 However, both works focused more 
on advancing computer vision algorithms 
in recognizing objects than on identifying 
CAPTCHA design flaws. The methodology we 
demonstrated — extracting challenge text, seg-
menting the text, and then recognizing individual  

characters — is generic to CAPTCHA security 
analysis but can also pinpoint design flaws. So, 
we use this methodology throughout the article.

Flaws similar to those found in Gimpy-r 
have occurred in CAPTCHAs that use gray-
scale images, which have pixels of white, black, 
and many shades of gray. An example is the 
Securimage CAPTCHA (see Figure 2a) avail-
able from the open source CAPTCHA service 
at www.phpcaptcha.org. By detecting all pixels 
of the foreground color (white), we effectively 
extracted all challenge characters (see Figure 2b).  
We then automatically detected with 100 percent  
success each individual character using the 
CFS method. As such, we effectively broke 
this scheme. On the other hand, in this case, 
gray-scale images don’t appear to degrade  
usability.

Another Securimage scheme (see Figure 2c)  
uses random arcs to intersect and connect its 
challenge characters to defend against seg-
mentation attacks. This scheme uses three col-
ors: white for the image background, lavender 
for the challenge text, and blue for the arcs. 
Because these colors are distinct, identifying 
and removing the arc is trivial. We first iden-
tify (by distinct color) arc portions that are 
outside the challenge text (that is, they don’t 
intersect with the text) and remove them by 
converting their color to the background white. 
We then convert the remaining arc portions to 
text color (see Figure 2d). Afterward, the CFS 
method achieved 100 percent segmentation suc-
cess; existing character-recognition technology 
can recognize the characters with a 95 percent 
success rate.

To make challenges look interesting, some 
CAPTCHAs generate images in which adja-
cent characters have distinct colors. The Cryp-
tographp CAPTCHA (available as a WordPress 
plug-in and at www.captcha.fr) is such a scheme 
(see Figure 3a). However, this design feature 
turns out to be a fatal security mistake.

The original challenges used random shapes 
such as circles and intersecting lines as noise. 
However, removing such noise is trivial because 
these shapes’ and lines’ thickness differs sig-
nificantly from that of characters in the images. 
Figure 3b shows the images after noise removal. 
Typically, segmenting overlapping characters is 
difficult. The state of the art9 suggests that a text 
CAPTCHA should rely on such segmentation- 
resistant mechanisms to provide security.  

Figure 2. Two Securimage CAPTCHAs. We can see (a) the first 
scheme, which uses a gray-scale image and (b) the text our 
automatic program extracted. (c) The second scheme uses random 
arcs to intersect and connect its challenge characters, but  
(d) we can still extract the text. Both the original images and those 
extracted with our program provide the same level of security. 
(These schemes were created in 2008; we broke them in 2009.)

(a) (c) (d)(b)

Figure 3. Color misuse in various CAPTCHAs. We can see (a) the  
original Cryptographp challenges, (b) the challenges after 
background noise removal, and (c) the final segmented results. 
(d) Two FreeCap examples and (e) two LinkedIn examples have 
similar security problems. (Cryptographp was created in 2006 and 
FreeCap in 2003; we broke both in 2007, and LinkedIn in 2009.)

(a) (b) (c)

(d)

(e)
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However, because each character has a differ-
ent (dominant) color in this scheme, by picking 
all pixels with the same color, we effectively 
segmented overlapping characters, as Figure 3c 
shows. We tested this method on 50 random 
challenges generated by this Cryptographp 
scheme and achieved 100 percent success for 
segmentation. The average segmentation speed 
was roughly 60 ms per challenge on a stan-
dard desktop computer. Any competent attacker 
could thus bypass this scheme instantly.

We observed a similar mistake in FreeCap (see 
Figure 3d), another popular CAPTCHA (avail-
able at www.puremango.co.uk/tag/captcha).  
In this scheme, adjacent letters have different 
colors, helping us segment touching and over-
lapping characters, which would otherwise be 
much harder. Note that FreeCap’s designer is 
security savvy: his previous work identified a 
well-known attack in which simply re-using 
a known challenge image’s session ID could 
bypass some early CAPTCHAs.12

Finally, we observed the same mistake in 
the latest CAPTCHA from LinkedIn, the popu-
lar social networking website (www.linkedin.
com). For the LinkedIn examples in Figure 3e, 
we first applied posterization, which reduces the 
number of colors in the images. We then located 
the region containing overlapping or touching 
characters. Next, we easily separated “U” from 
“V” and “L” from “H” by picking up all pixels of 
the same color in the concerned region to form 
a character.

BotBlock, available at http://chimetv.com/
tools/botblock, demonstrates that misusing 
complex color combinations in a CAPTCHA 
can cause both usability and security prob-
lems. This scheme, as shown in Figure 4a, uses 
random letters that appear in different places 
in a given challenge. The scheme introduces a 
sophisticated color-management method: back-
grounds comprise multiple color blocks of ran-
dom shapes, and foreground colors also occur 
in the background.

However, this color scheme often made it 
hard for people with normal vision (includ-
ing us) to recognize challenge texts, and even 
harder for vision-impaired people, such as those 
with color blindness, to do so. (Color blindness 
affects roughly 8 percent of adult males and  
1 percent of adult females in North America and 
Europe, and the most common form is difficulty 
discriminating between red and green.1)

Moreover, this scheme relied too much on 
color for security. We tested 100 samples and 
all were indeed resistant to the best optical 
character-recognition program on the market. 
Unfortunately, a design error made removing 
all the complex background trivial: the scheme 
has an exploitable color pattern for foreground 
texts — that is, the same color occurs repeti-
tively. By looking for this pattern, we success-
fully extracted the challenge text in all samples 
we tested. The scheme’s robustness is equivalent 
only to that for the challenges Figure 4b shows, 
which are trivial to decode.

For example, the letters in Figure 4b were 
vulnerable to a “pixel count” attack we dis-
covered.13 That is, by counting the number of 
foreground pixels in each character, we could 
recognize most of the characters. For a few with 
identical pixel counts, simply analyzing their 
geometrical shapes allowed our algorithm to 
tell them apart. Such simple attacks success-
fully broke all 100 random samples we tested.

Black and White CAPTCHAs
Let’s now look at two black and white text 
CAPTCHAs: the f irst was until recently 
deployed by Megaupload.com, one of the largest 
file-sharing websites in the world; the other is 
from BotDetect, a commercial CAPTCHA sys-
tem that claims a wide deployment by major 
websites (see http://captcha.biz). We show that 
such a simple combination of colors in CAPTCHAs 
can still go wrong.

Figure 5a shows the Megaupload CAPTCHA, 
whose key innovation was to combine two 
mechanisms from early research8,14 that were 

Figure 4. BotBlock CAPTCHA. We can see (a) the  
original sample challenges and (b) challenge text 
our automatic program extracted. Images in  
(a) and (b) provide the same level of security. (Its 
first deployment date is unknown, but we broke 
this scheme in 2007.)

(a) (b)
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already proven effective at increasing security. 
The first mechanism makes characters overlap 
and connect with each other; in general, cur-
rent computers aren’t good at segmenting con-
nected characters. The second mechanism uses 
Gestalt psychology: although some portions of 
each character are removed, humans can infer 
the whole picture from only partial informa-
tion, whereas machines can’t. Combining these 
mechanisms was clever and easy to imple-
ment: the Megaupload CAPTCHA connected 
each character (in black) with its neighbors 
and changed the connecting areas to the back-
ground color (white). (The latter is effectively 
an XOR operation.)

It appears that using Gestalt psychology also 
contributes to this CAPTCHA’s usability: once 
you get used to the scheme, it’s reasonably easy 
to read which character is which with accu-
racy. The usability improvement this feature 
introduced is more apparent when we compare 
images in Figure 5a with those in Figure 5b —  
the latter are the same images but with the 
Gestalt feature turned off. 

The segmentation attack we used on this 
CAPTCHA works as follows. We first used the 
CFS method to extract black components, which 
define most of each character’s actual content 
and are never shared with adjacent characters. 
Figure 6b shows the result of extracting all 
black components, each highlighted with a dif-
ferent color for illustrative purposes.

The second step of our attack was to identify 
and extract shared white components, which are 
the connecting areas between adjacent charac-
ters. We first applied the CFS method to detect 
all white components. Then, we excluded the 
main image background (that is, the outside of 
the image text), which is the largest white com-
ponent in terms of pixel count; Figure 6c shows 
the remaining white components. With some 
heuristics, we also excluded, with a high suc-
cess rate, loops that occur normally as part of 
a character’s shape, such as those found in “A,” 
“Q,” and “6,” and loops that occur when con-
necting characters together. For example, the 
connection between “V” and “U” in the second 
example in Figure 5a created a connection loop. 
Figure 6d shows that we successfully identified 
all the shared white components.

The final step was to put the shared white 
components in the right location to merge with 
corresponding black components to form each 

Figure 5. The Megaupload CAPTCHA. We can 
see (a) four example challenges, with the correct 
answers being NAQ6, VUX6, GMW7, and ZYB9, 
respectively. In (b), we see the same challenges 
but with the Gestalt feature turned off. (This 
scheme’s first deployment date is unknown, but 
we broke it in 2009.)

(a) (b)

Figure 6. A segmentation attack on the Megaupload 
CAPTCHA. We took (a) an original image and  
(b) extracted all the black components (removing a 
small amount of black noise). We then (c) extracted 
all the white components except the main image 
background and (d) extracted the shared white 
components by removing loops. Finally, we  
(e) merged black and shared white components  
to form individual characters.

(a) (b)

(c)

(d)

(e)
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complete character. We know that n number 
of characters when connected horizontally 
should typically produce n – 1 connection areas 
between them, and that shared white com-
ponents that are juxtaposed vertically must 
belong to the same connection area. So, in an 
example that has only four characters, as in 
Figure 6,

•	 all shared white components inside the first 
connection area and all black components 
to its left will be merged to form the first 
character;

•	 all shared white components inside the first 
and second connection areas and all black 
components between them will be merged to 
form the second character;

•	 all shared white components inside the sec-
ond and third connection areas and all black 
components between them will be merged to 
form the third character; and

•	 all shared white components inside the third 
connection area and all black components to 
the area’s right will be merged to form the 
fourth character.

Finally, we converted the color of merged 
components to black, and kept individual 
characters away from each other horizontally.  
Figure 6e shows the final segmented result.

Our attack achieved a segmentation success 
rate of more than 78 percent; it took roughly 
120 ms on average to segment each challenge on 
a standard desktop computer. This implies that 
we could break the Megaupload CAPTCHA  
(using segmentation and then recognition) 
with an overall success rate of 63.7 percent  
(≈78.25% * 0.954). Details of our attack are avail-
able elsewhere.15

The BotDetect CAPTCHA that we examine is 
a “chess scheme” according to its designers. As 
Figure 7a shows, this scheme is effectively like 
embedding characters within a chess board. As 
each character is divided into numerous com-
ponents, either black or white, and all the char-
acters are mixed and connected with the chess 
board, the designers expect that automated pro-
grams will fail in extracting and recognizing 
the embedded characters. However, a simple 
attack works as follows.

We first detect each chess box. If the major-
ity of pixels in a box are black, we reverse all 
the pixels that are originally black to white, and 

the pixels that are originally white, if any, to 
black. If the majority of pixels in the box are 
white, we do nothing. Figure 7b shows that 
our automated program successfully extracted 
all the characters. Locating and recogniz-
ing each character is trivial, so the scheme is  
broken.

Lessons Learned
Using color in CAPTCHAs can be tricky. Many 
CAPTCHAs, ranging from the earliest schemes 
to the latest design, and including the widely 
used LinkedIn, Megaupload, and BotDetect 
schemes as well as some relatively less-known 
designs, have had fatal security vulnerabilities 
due to their imprudent use of color. Using com-
plex or fancy color schemes has raised usability 
concerns as well. It is far more difficult than 
it appears, for instance, to tell what kind of 
color images would cause problems for color-
blind people, given the various types of color 
blindness.

We can summarize our common method for 
attacking CAPTCHAs into the following proce-
dure: separating foreground from background; 
identifying connected components in the fore-
ground and, when necessary, separating the 
connected components into individual charac-
ters; and subsequently recognizing individual 
characters. We can thus derive the following 
guidelines for using color:

•	 Uniformity in the foreground or background 
reduces resistance to segmentation attacks 
in general. A good security design principle 
is minimal uniformity in the foreground 
and background, with a controlled cost for 
readability.

•	 Contrast between foreground and background, 
or contrast among foreground characters, also 
reduces resistance to segmentation attacks. 

Figure 7. A BotDetect CAPTCHA. We took (a) sample challenges 
and (b) extracted the challenge text using our automated program. 
(This scheme was created in 2006; we broke it in 2009.)

(a) (b)
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For this reason, coloring that increases such 
contrasts might be undesirable.

•	 Perceptually connected but physically dis-
connected components are another good 
security design principle; however, coloring 
might enhance or destroy perceptual group-
ing with security consequences. So, a care-
ful evaluation of the end design’s security is 
essential.

However, engineering a CAPTCHA that entirely 
relies on color arrangement to provide rea-
sonable security and usability simultaneously 
doesn’t appear to be easy. Instead, we consider 
this an open problem.

To avoid the potentially complicated conse-
quences of usability and security, a text CAPT-
CHA should use a simple color scheme; using 
color should aim at increasing a CAPTCHA’s 
usability rather than its security. In particular, 
a CAPTCHA should rely on better-understood 
segmentation-resistant mechanisms,8 rather 
than complex color management, to provide 
security. 

R ecent versions of several major CAPTCHAs 
have adopted these lessons and don’t use 

complex color schemes:

•	 Microsoft uses a simple color scheme in 
which the foreground (that is, the challenge 
text) is dark blue and the background light 
gray.

•	 Google uses a single color (green, red, or 
blue) for all text and a white background.

•	 Yahoo uses black and white only.
•	 reCAPTCHA (http://recaptcha.net) also uses 

black and white only (reCAPTCHA is the lat-
est design from the same team that invented 
Gimpy-r and EZ-gimpy).

The well-known “Las Vegas effect” on using 
color in interface design suggests that using 
fewer colors can be better than using too many. 
It appears that this principle also applies to text 
CAPTCHAs, but in this context, it isn’t only a 
usability principle but also a security lesson.�
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