Failures of Security APIs: A New Case

Abdalnaser Algwil and Jeff Yan

School of Computing and Communications, Lancaster University, UK
{a.algwil, jeff.yan}@lancaster.ac.uk

Abstract. We report novel API attacks on a Captcha web service, and
discuss lessons that we have learned. In so doing, we expand the horizon
of security APIs research by extending it to a new setting. We also show
that system architecture analysis is useful both for identifying vulnera-
bilities in security APIs and for fixing them.

Keywords: API attacks, architecture analysis for security, Captcha,
web security

1 Introduction

A security API is an Application Programming Interface that facilitates less
trusted or even untrusted code to interact with a trusted computer. A classic
example of security APIs are those that enable interactions between a banking
computer (less trusted) and a cryptographic Hardware Security Module (trusted)
attached to it. Security APIs differ from general programming APIs in that the
former enforces a security policy, and typically the policy is about preventing
some information flow while allowing tight and dynamic interactions between the
untrusted computer and the trusted one. Even if the less trusted or untrusted
code is malicious, ideally it should not be able to break the security of the trusted
computer.

Security APIs started to get going as a research subject in 2000 with Ross
Anderson’s seminal paper [1]. A research community has formed, and interesting
results emerged. However, most security API attacks published to date are about
HSMs and cryptographic key management APIs; e.g. [2-4,8,9]. An exception is
Robert Watson’s work [12] that exploited concurrency vulnerabilities in system
call wrappers to launch APT attacks on operating systems.

In this paper, we report novel API attacks on CCaptcha (http://crecaptcha.org),
an Internet service that is created to generate Captchas for any websites. A
CCaptcha server (trusted) generates automated Turing tests using sensitive ma-
terials, and verifies each test result for the websites in the wild. The websites
(untrusted) interact with the CCaptcha server via a set of APIs defined by the
service provider. This gives us an opportunity for studying security APIs in a
new setting, which expands the horizon of security APIs research.

We will show a number of API attacks. For example, one allows us to down-
load all sensitive materials that the service uses for constructing Captchas; one
allows us to launch an effective dictionary attack on the service; and the third

http://crecaptcha.org

allows us to bypass this Captcha entirely. Two of the attacks defeat entirely or
nearly so the purpose of deploying this service.

Our attacks work on both versions of the CCaptcha service, one released in
2010 and the other in the summer of 2014 (i.e. the latest version). It is clear
that the service provider has invested some serious efforts in its design and
implementation. But we argue that the designers did not seem to consider system
architecture issues carefully, and this is a main reason that their security APIs
fail. We discover our attacks by analysing the service’s architecture, interactions
among individual system components, as well as a limited amount of dynamic
code available to a client.

This work also contributes to Captcha research. On the one hand, prior art
did not examine Captcha security from the angle of security APIs, as conven-
tional Captcha designs rarely provide the possibility to articulate or enforce a
security policy.

On the other hand, text Captchas have been widely deployed, but many
designs have been broken [5,10, 11,13, 14]. Tt is intellectually interesting and
practically relevant to explore alternative designs, which are currently an active
research topic. Initially disclosed in a USA patent application [7], CCaptcha is
an interesting alternative scheme. The design is based on Chinese language, but
due to its clever idea, it is universally usable, even to those who are illiterate
in Chinese, which is quite counterintuitive. In a user study run by the inven-
tors, foreigners without Chinese language knowledge achieved a high accuracy
in solving this Captcha as native speakers did [6]. Our work is the first security
analysis of CCaptcha.

2 CCaptcha

Concept. As shown in Fig.1, a CCaptcha challenge (or puzzle) is composed of
10 images. The bigger image at the top-left corner is a target Chinese character
that can be decomposed into multiple elementary radicals. The nine smaller
images on the right are candidate radicals. Some of them are real radicals from
the target character, but others are faux ones. Thin lines and small dots in the
background are not part of the character or radicals, but clutters. To pass a test,
a user has to click typically three real radicals on the right panel. Selecting any
faux radical will fail the test.

PR oN
Ol = + %

Please select 3 components

\,

Fig.1: CCaptcha: an example

Each time when a character or radical is used in a puzzle, it will undergo
random distortions such as rotation, scaling and warping, and then random back-
ground clutters will be added. The inventors applied OCR software to recognize
such distorted characters and radicals, but to no avail. Whether their recognition
experiment is rigorous or not is beyond the scope of our paper. However, human
users can easily solve such tests via pattern recognition, and they do not have
to be literate in Chinese.

Random guess attacks. With random guessing, an attacker has about 1.19%
chance (i.e., 1/C3) to break this scheme. If necessary, a user can be asked to solve
2 challenges or more in a row, and this will reduce the random guess success to
~ 0.014% = (1.19%)2, or less. Alternatively, if the number of real radicals used,
the number of all candidate radicals, or both, is slightly increased, it will reduce
the random guess success, too. It will further decrease the success probability of
random guess attacks by applying all these countermeasures together. Therefore,
random guess attacks are not a serious issue for this Captcha.

System architecture. CCaptcha is implemented as a web service, and it
provides both Captcha creation and validation services to web sites, where a
CCaptcha challenge (or puzzle) can be easily embedded in each web page by
installing a PHP library.

The service provider does not explicitly describe the system architecture
for CCaptcha. By studying the limited amount of documents available online
and by experimenting with the service, we reconstruct its system architecture
diagram. Figure. 2 attempts to capture the workflow envisaged by the designers.
Interactions among an end user, a web server and the CCaptcha service can be
summarized as follows:

End User

Web Server S CCAPTCHA
Server

Fig. 2: CCaptcha web service: a reconstructed system architecture

1. A user requests to fetch a page from the web server, and the server sends
her the page in which a CCaptcha script is embedded;

2. Driven by the script, her browser retrieves a puzzle from the CCaptcha

server;

The user submits her puzzle solution to the web server;

4. The web server forwards this solution to the CCaptcha Server, and the
CCaptcha Server verifies it and sends back a verification result;

5. Following the result, the web server accepts or denies the user’s request.

@

3 API attacks on CCaptcha

Here we present API attacks that we have uncovered. They include information
leakages, a dictionary attack and several oracle attacks. Some of the attacks are
built upon each other, but some are standalone attacks on their own.

3.1 Information leakage

The CCaptcha service provides a PHP library labcrecaptcha.php, which wraps
its APIs and provides a simple mechanism to embed a Ccaptcha puzzle on any
web page. Our analysis starts with this library and follows up with leads exposed.

Paths. At the beginning of the library, as shown in Fig. 3, we find the location
and path where the CCaptcha APIs are served:

https://crecaptcha.org/crecaptcha/api/

define ("CRECAPTCHA_API_SERVER", "https://crecaptcha.org");
define ("CRECAPTCHA_API_PATH", "/crecaptcha/api");

define ("CRECAPTCHA_VERIFY_SERVER", "crecaptcha.org");
define ("CRECAPTCHA_VERIFY_PATH", "/crecaptcha/api");

Fig. 3: Server and path information for the CCaptcha service

Puzzle generation. The library also reveals that a script puzzle.php is the
interface responsible for Captcha generation. We note that once this script is
called, a puzzle is created as an array of 10 integers (see Fig. 4).

var CrecaptchaConfiguration = {

server : 'https://www.crecaptcha.org/crecaptcha/api',

ishint : 3,

hardlevel : 1,

skin : 1,

puzzle : new Array('10089','18429','253"','136"','18591"',

'20469','19901"','17288"','271"','20461"')};

document.write('<s' + 'cript type="text/javascript" src="' +
CrecaptchaConfiguration.server+'/crecaptcha.js"></s'+'cript>');

Fig.4: Captcha generation

Hidden field. When integrating the library with our test web page, we discover
a hidden field crecaptcha_puzzle. This field can be obtained by using a PHP
super-global method such as GET and POST during the Captcha verification
process.

We note that this hidden field stores 10 integers separated by comma, for
example,

crecaptcha_puzzle = "10089, 18429, 253, 136, 18591, 20469,
19901, 17288, 271, 20461"

We also note that these numbers are the same as those stored in the puzzle
array.

It turns out that these numbers are distinct IDs of the images used to compose
a CCaptcha puzzle, with the first number identifying the target character and
the others identifying nine candidate radicals respectively. As illustrated in Fig.
5, a puzzle is generated by fetching 10 images via their IDs, and then composing
the images accordingly.

18429.png

253.png

136.png
/

10089.pnk
(Character) | .
| 19901.png

| 20461.png

N

20469.png

lease select 3 components]

A
18591.png

17288.png 771 png

Fig. 5: Images used in a puzzle (1 character + 9 radicals) and their numeric IDs

Each time when a character or radical is used to compose a puzzle, it will
undergo different distortions and be rendered as a different image. That is, the
generator will not reuse any image, but create a different image for the same
character or radical each time. However, the numeric ID always remains the same
for all the different image versions rendered for the same character or radical.
That is to say, there is a fixed one-to-one relationship between a character /radical
and its image ID. This means that with the knowledge of an image’s ID, we
will know the image’s content without applying any computer vision or pattern
recognition algorithms.

Database leakage. A further analysis of puzzle.php source code (Fig. 4) re-
veals a JavaScript file crecaptcha. js. By examining this JS script (see Fig. 6),
we discover that a PHP script image . php is responsible for retrieving image files
from the CCaptcha server.

_create_image_tag: function (i, c, width, height) {
output = '<img src="' + CrecaptchaConfiguration.server +
'/image.php?c=' + ¢ [+ '" alt="" style="width:'+
width + ';height:' + height + ';border: Opx;" />';
if (1 >0 && i < 10){
output = '<a href="javascript:Crecaptcha.click_option("
+ i.toString() + ');">' + output + '';

}

return output;

}s

Fig. 6: Source code snippet from crecaptcha. js: image.php fetches images
from the CCaptcha server

The script image . php enables us to fetch any radical and character by send-
ing their numeric ID to the server. For example, as shown in Fig. 7,
https://crecaptcha.org/crecaptcha/api/image.php?c=1 returns us the char-
acter/radical of ID 1.

g Opera =T ﬂh‘

| B image.php (151x78) x |

<+ C == | © https//crecaptcha.org/crecaptcha/apifimage. phpZe=1 @

Fig. 7: Retrieving an image from the CCaptcha database

By sending a sequence of numbers starting from 1 to 72154, we manage to
fetch 66,111 unique characters/radicals from the server — all the components
used for CCaptcha generation. Note that a majority of numbers between 13060
and 19783 are not assigned to any images.

https://crecaptcha.org/crecaptcha/api/image.php?c=1

Note: all the scripts that we have analysed are available on the client side,
and they are readily accessible merely via a browser.

3.2 A dictionary attack

The information leakages discussed above can be exploited to launch two attacks:
1) a machine learning attack that trains an automatic Captcha solving algorithm
with the leaked database, and 2) an effective dictionary attack that solves the
CCaptcha tests with a high success rate.

The first attack is beyond the scope of this paper, and we discuss only the
dictionary attack here. The idea is as follows. We build a dictionary with entries
being each character along with its valid radicals, and we store their image IDs
in the dictionary. To solve a new puzzle, we simply pick up its target character’s
ID from the traffic, use that ID to look up the dictionary, and then identify valid
radicals among nine candidates in the puzzle.

We have a simple but effective method for dictionary construction. By ex-
ploiting the ID leakage vulnerability, we know which character/radical is which,
with the knowledge of their ID alone. If we analyse multiple puzzles generated
for the same target character, we will know that if a radical occurs every time
or most of the time in the puzzles, it will be a valid one with a high probability.

A general description of our dictionary construction is given as follows. First
we launch a large number of requests to the server to collect 6§ different puzzles
for each character. For a certain character, we can sort all candidate radicals by
their occurrence frequency in the 6 puzzles. If a radical occurs at least k times,
we keep it in the dictionary as a real radical for the character. This process will
be applied to all characters until our dictionary is stabilized. More details are
given in Algorithm 1.

Next we discuss how to determine 6 (the number of tables) and k (occurrence
threshold) with the following analysis.

Parameter configurations. We know that a puzzle typically has 3 real radi-
cals and 6 fake ones. It is reasonable to assume that they are randomly selected
by the system from the real radical set (of a certain character) and the fake
radical set, respectively. Also assume that a certain character has m real radi-
cals (e.g. m = 4 for character 42328 and m = 3 for character 30646 in Fig. 10).
Therefore, for 6 trails, the probability that a real radical has been selected k
times, denoted by P;, follows the binomial distribution:

Py =Crpb(1—py)" 7,

where p; = 3/m is the probability of a certain real radical having been
selected in a trial. Then the probability that a real radical has been selected less
than k times is:

k—1
Pr = P(#real < k) =Y Clpi(1—p)"" (1)
=0

Algorithm 1: Dictionary Construction

input : Puzzles from Chinese Characters Database in CCaptcha Server
output: Dictionary contains each Chinese character along with its correct
radicals

DBccs : Chinese Characters Database in CCaptcha Server;
P: Puzzle (1 character 4 9 radicals (3rcai+6faus});

P[char] : Target Character ID (i.e. Big image);

P[R;] : Radical ID (i.e. small Image), where j =1,2,3,...,9;
Ty : Table to store puzzles (P), wheren =1,2,3,...,0;

0 : Number of tables (e.g. 5);

k : Threshold of a radical occurrence;

NoR : Number of table Records;

Pr, : Stored Puzzle in table n (Ty);

Cr, : Target Character ID in stored puzzle in table n (Ty);
R, : Radical IDs in stored puzzle in table n (Th);
All_Radicals : Pp, [R] + Pp,[R] + Pry[R] + -+ - + P, [R];
candidate_radicals : IDs of correct radicals that compose the Target
character;

do
P < send a request to C'Captcha Server and fetch a new puzzle;
for n < 1 to 6 do
if (IsFound(P[char], T,) # true) then
insert P into T, ;
break; // for
end
end
while (NoR(Ty) < NoR(DBccs));

Dictionary «+ { };

for all records in T1 do
Cr, < Pr,[char];
All_Radicals < P, [R];
for n < 2 to 6 do
Ry, < GetRadicals (T, , Cr,);
Merge R, with All_Radicals;
end
count all of the matching values in All_Radicals;
candidate_radicals < All_Radicals[R] where their frequency > k;
insert(Cry, candidate_radicals) into Dictionary;
end

Similarly, we can model the probably distribution of the fake radicals. Assume
that there are M fake radicals that can be chosen from, where M = z — m, and
z = 1366 (the total number of radicals used in the system). After 6 trials, the
probability that a fake radical has been selected at least k times is

k—1

Pr= P#foke > k) =13, Clps(1 = p2)"" @
i=0

where pg = 6/M.

In building our dictionary, we repeat the random selecting process 6 times,
and then select radicals occurred at least k times as the real ones. Note that Pgr
and Pr are two important metrics determining the effectiveness of the dictionary.
By definition, it is preferable to set parameters that yield small Pz and Pg.

We have empirical evidence that ps is relatively small but p; relatively large:
by sending millions of requests to grab puzzles from the CCaptcha server, we
establish that not all 66111 characters, but only 50313 of them, are used as a
target character in a puzzle, where there are at least 3 valid radicals. We also
establish that for all the 50313 characters, m € {3,4,5,6,7}.

Therefore, according to Eq. 2, and Eq. 1, Pg and Pg can be very small if we
choose a large # and an appropriate k. However, a large 6 would result in a high
computational cost. To balance the trade-off between accuracy and efficiency,
we decide to set # = 5 and k = 3, which as shown later will yield a reasonable
accuracy with a low computational cost.

Given the distribution of character number with respect to m, we can also
calculate PYverall and PQverell defined as follows:

m="T7
h t
ngerall — Z #C ar?’\i er(m) PR(m),

m=3

m="7
h t
PFOverall — Z #C ar?\i 67“(777,) PF(m)7

m=3

where N = Z; #character(m) = 50313.

Table 1 shows various probabilities as calculated, and it clearly indicates that
with 6 = 5 and k& = 3, an effective dictionary can be built, since Pg”em” and
Pg”emll are low, which suggests that real radicals tend to occur more than k
times while fake radicals tend to occur less than k times.

Table 1: the probabilities of Pr & Pr (8 = 5; k = 3)

- # character(m) Pr(m) Pr(m)
m =3 25088 0.0 % 0.00008474 %
m=4 18780 10.35 % 0.00008493 %
m=>5 5907 31.74 % 0.00008511 %
m=26 525 50.00 % 0.00008530 %
m=7 13 63.21 % 0.00008549 %
o i
Prore” 8.13 % 0.00008486 %
Tablel
Char | Rl | R2 | R3 |[R4] R5 | R6 [R7|R8] R9
11148 | 17901 | 63470 | 21424 [395] 18043 | 18445 | 136] 41 | 23409
Table2
Char [RI| R2 [R3] R4 | R5 [R6 | R7 | R8 | R9
136] 17908 | 23 | 63470 | 18461 [19796] 18576 | 17788 | 18673
Table3
Char [RI | R2 | R3 [R4 [R5 | R6 | R7 | R8 | R9
11148 [18461] 20472 |17964] 17989 | 120 | 63473 | 136 |18445] 75
Tabled
Char | RI [R2 [R3 | R4 | R5 | R6 [R7] R8 | R9
63470 | 18461 | 17973 | 27606 | 17975 | 17972 136] 17899 | 149
Table5
Char | RI [R2| R3 [R4 | R5 | R6 | R7 | R8 | R9
11148 | 18445 | 71 | 20461 | 18089 | 18461 | 30776 | 136 | 28653 | 439

|
L0 Z

Dictionary (1 Character + candidate radicals) (T = times; R = radical)

Char

R1

T1

R2

T2

R3

T3

R4

T4

RS

T5 | R6 | T6 |...... R15 | T15

11148

136

5

18461

4

18445

3

63470

3

Fig.8: The dictionary construction process for a character

An example of dictionary building is given in Fig. 8, where we use the
character 11148 and § = 5. Each puzzle is stored in a different table that contains
the character alongside with 9 candidate radicals. We put together the 5 puzzles
and count the occurrences of each candidate radical. Radical 136 occurs 5 times,
18461 occurs 4 times, and both 18445 and 63470 occur 3 times, and therefore
all of them are determined as real radicals for the character. Figure. 9 shows all
the corresponding images identified by their IDs, confirming the correctness of
our algorithm.

11148 (character) 136 (5 times) 18461 (4 times) 18445 (3 times) 63470 (3 times)

Fig.9: An example on a character with the classified real radicals

-
e"&’l‘:%AttackCCapt:har’D\:tmnary‘php P~ H & Dictionary | ‘

File Edit View Favorites Tools Help

Dictionary (Chinese characters along with their radicals)
Displaying:

Page‘ « | < 1 v] > | » ‘ Rows.'Pag: Total of Records are: (50313).

Current Records: 1 - 30

Fig. 10: Dictionary visualization

Ezxperiment results. We spent about two weeks building a dictionary with
0 = 5 tables, i.e. 5 different puzzles for each character. Figure. 10 visualizes a
small part of the dictionary. With this dictionary, we tested on 2000 new puzzles
that were randomly generated by the service, and completely solved 1833 of
them, achieving a success rate of 91.65%. For 152 failed cases, 2 out of the 3 real
radicals were successfully identified by our dictionary attack. It takes on average
about 0.093 seconds to solve a puzzle on a standard desktop computer.

To increase the success of our dictionary attack, we can further suppress
Pg”em” and Pg”em” by increasing 6 (the number of tables) and choosing an
appropriate threshold k. For example, when we set § = 10 and k& = 5, Pg”em”
becomes 3.10% and PE¢"* becomes 0.000000041%, which are both much lower
than the previous configurations. The dictionary attack’s success will be im-
proved accordingly.

3.3 Verification Abuse

Further investigation into the CCaptcha library “labcrecaptcha.php”reveals that
a script named “verify.php”is responsible for Captcha verification. The key API
is defined as follows:

function check_crecaptcha_answer($remoteaddr, $puzzle, $answer,
$useragent, $userlanguage, $setting)

It returns ‘Success’ if the user’s answer is correct, and ‘ Failure’ otherwise. Two
parameters of the API are defined but not really used in the verification process,
and they are remote address and user agent. We find that adversaries can abuse
this API for the following oracle attacks.

Bypass the service. For any puzzle generated by the service, an attacker can
ask the server to do a brute force search for the correct answer, and then the
attacker uses the answer to pass the test. The pseudocode in Algorithm 2 shows
our attack. We enumerate each combination of 3 candidate radicals, and then
send it to the service one by one. It takes at most 84 trials (i.e., CJ) to know
which combination is correct. In our experiment, our success rate is 100% and
it takes less than 30 seconds on average to get the correct answer. This attack
enables adversaries to entirely bypass the CCaptcha test.

Improve dictionary quality. We can also improve our dictionary (constructed
in Section 3.2) by abusing the API to ensure the correctness of dictionary entries,
e.g. by filtering out fake radicals.

We first run Algorithm 1 to build our dictionary, which mainly keeps track
of radicals appearing more than 3 times in five puzzles. Since only 5 tables
are used for dictionary construction, we also keep track of each radical that
appears only twice. Next, for each dictionary entry, we sent a series of requests
to the verification script, each request including a character together with three
candidate radicals, and the check_crecaptcha_answer API will tell us whether
they are the right combination.

Algorithm 2: Brute Force Search

input : Puzzle (1 character 4 9 radicals(s real+6 taux})
output: Correct solution (IDs of correct radicals that compose the Target
character)

P: Puzzle (1 character + 9 radicals (3rcai+6fauc});
P[char] : Target Character ID (i.e. Big image);
P[R.] : Radical ID (i.e. small Image), wheren =1,2,3,...,9;

P < grab a new puzzle needed to solve;
for i < 1 to 7 do
for j < i+ 1to8do
for k< j+1to9do
Possible_Solution = {P[R;], P[R,], P[Rk]} ;
Result = check_crecaptcha_answer (P, Possible_Solution,...);
if (Result = success) then
Correct_Solution = Possible_Solution;
Exit;
end
end
end
end

This way, we have successfully eliminated each radical that accidentally re-
peats at least 3 times but is not part of the correct combination. On the other
hand, we have also found that some radicals appear only twice, but are real roots
from target characters.

However, this enhancement method hardly produces a perfect dictionary for
a simple reason: when we choose small numbers for k and 6, some real radicals
will never be observed in the say 5 tables.

Build an optimal dictionary. We can also build an attack dictionary by
abusing the verification API alone. To do so, we ask the service to perform a brute
force search for each character. That is, at most 84 requests will identify 3 real
radicals for a character, creating a dictionary entry. The dictionary constructed
this way will be optimal, but it will take a long time, much longer than required
for building the improved dictionary described earlier.

4 Countermeasures

The vulnerabilities we have discussed are mostly due to architecture flaws in the
system design, and they can be addressed by carefully thinking about architec-
ture issues.

All the information leakage vulnerabilities can be prevented by significantly
restructuring the division of labour between the CCaptcha server and the code
executed on an end user’s computer (i.e. the client). Specifically, generating

Captchas can be entirely done by the server without interacting with the client.
The server randomly picks a target character, and assembles it with nine can-
didate radicals into a big image like the one shown in Fig 1. Then, the image is
sent to the client, which will display the image to the end user, collect her inputs
in the form of a series of coordinate pairs describing where she has clicked on
the image, and then send the inputs to the server. Next, the server interprets
which candidate radicals the user has clicked, and determines whether the clicked
radicals are real ones or not.

The one-to-one relationship between a character (or a radical) and its image
ID is a devastating vulnerability. It could be fixed by hashing the ID with a ran-
dom number to give each image a completely different name each time. However,
this quick hack solution is not needed anymore if the new architecture discussed
above is in place.

Our dictionary attack was built on both the leaked database and the one-to-
one mapping between characters (or radicals) and their IDs. With both of the
problems being fixed, the dictionary attack will no longer work.

Verification abuse has not only contributed to improve our dictionary attack,
but it can be used as a standalone attack by itself. The root causes of verification
abuse are two serious flaws in the architecture design:

1. No mechanism is in place to identity a web server that interacts with the
CCaptcha server, and thus any third party can request the CCaptcha server
for Captcha generation and verification.

2. No mechanism is in place to vouch and verify the authenticity of each
Captcha puzzle, and the CCaptcha server fails to tell whether a puzzle is
issued by itself or not.

Such critical flaws have allowed us to launch various oracle attacks. Even
when we sent millions of requests to the server, we have experienced little ob-
struction.

To fix these problems, we recommend an improved system architecture, which
is shown in Fig. 11.

First, the CCaptcha service should provide each website a unique pair of
APT keys: one is a site key that uniquely identifies a website, the other a secret
key that is known only to the website and the CCaptcha server. An end user
will get the site key from the web server (step 1 in Fig. 11), and use the key
to retrieve a Captcha from the CCaptcha server (step 2-A). The secret key is
used for authenticated communication between the web server and the CCaptcha
server in the verification stage (step 4-A) to prevent the verification abuse.

The CCaptcha service can introduce an enrolment process, in which the pair
of API keys is generated upon a website’s registration with the service. Second,
a unique ID (token) should accompany each new puzzle issued by the Captcha
generator (step 2-B). Each token should be used only once. This token should
also accompany the solution when the latter is sent from the web server to
the CCaptcha server in the verification process (step 4-A). Using this token, the
CCaptcha server can determine whether a puzzle is authentic or issued by a party

impersonating the Captcha generator. Additionally, the end of the puzzle’s life
should be associated with the end of the token’s life in the verification process.

End User

@-(A) Answer + secret key + Token

9-(8) Response (success/failure)

<
<«

Web Server CCAPTCHA Server

Fig.11: A revised system architecture

When adversaries have a website and an end user both under their control,
they will have legitimate access to the API keys and can misuse them. For
example, the adversaries can act first as a legitimate web server and register
for free access to an API key pair, and they can act thereafter as a legitimate
end-user. A simple, cheap but imperfect solution we suggest is for the CCaptcha
server to monitor the number of requests from each website, and to apply rate
control when traffic anomalies are detected.

5 Lessons

It is notoriously hard to design security APIs. With nearly thirty years of re-
search in cryptographic protocols, it is still a challenge to get a novel design
right. Security APIs are much harder to design than cryptographic protocols.
Therefore, it is crucial to understand failures of security APIs, and learn from
them.

We conclude this paper by summarising lessons that we have learned both
from identifying the API attacks on CCaptcha, and from fixing the vulnerabili-
ties.

Lesson 1: Security policies were not articulated by the designers. Otherwise,
entirely bypassing the service should probably have never happened in the first
place.

In this specific context, at least three security policies are relevant:

1. Do not trust client;
2. No leakage of sensitive materials;

3. No bypass of the service without solving an automated Turing test.

Lesson 2: System architecture is highly relevant to security APIs, but it was
not carefully considered, and not articulated either.

Probably the most important lesson we have learned is the following. A care-
ful analysis of system architecture is useful and effective for identifying vulner-
abilities in security APIs and for figuring out suitable countermeasures. To the
best of our knowledge, this insight was never spelled out in the literature.

To extrapolate it a little further, we believe that for any complex system
(including a system of systems) where multiple components interact with each
other, an architecture analysis will prove an effective method both for identifying
security vulnerabilities in the system and for fixing them. This analysis can be
applied in many stages of the system’s life circle such as design, implementation
and testing.

This method of ‘architecture analysis for security’ deserves further study and
is our ongoing research.

6 Acknowledgement

We thank Butler Lampson for inspiring conversations, Yu Guan for assistances,
and anonymous reviewers for helpful comments.

References

1. Anderson, R.: The correctness of crypto transaction sets. In: 8th International
Workshop on Security Protocols. Cambridge, UK (2000)

2. Berkman, O., Ostrovsky, O.: The unbearable lightness of pin cracking. In: Financial
Cryptography and Data Security, pp. 224-238 (2007)

3. Bond, M.: Understanding Security APIs. Ph.D. thesis, University of Cambridge
(2004)

4. Bond, M., Anderson, R.: Api level attacks on embedded systems. In: IEEE Com-
puter Magazine. pp. 67-75 (2001)

5. Bursztein, E., Martin, M., Mitchell, J.C.: Text-based captcha strengths and weak-
nesses. In: Proceedings of the 18th ACM conference on Computer and communi-
cations security. ACM (2011)

6. Chen, L.: Personal Communications (2014)

7. Chen, L., Juang, D., Zhu, W., Yu, H., Chen, F.: CAPTCHA AND reCAPTCHA
WITH SINOGRAPHS. Patent US20120023549 Al- (2012)

8. Clulow, J.: On the security of pkcs# 11. In: Cryptographic Hardware and Embed-
ded Systems - CHES 2003, pp. 411-425 (2003)

9. Cortier, V., Steel, G.: A generic security api for symmetric key management
on cryptographic devices. In: Information and ComputationComputer SecurityE-
SORICS 2009, pp. 605-620 (2009)

10. Gao, H., Wang, W., Qi, J., Wang, X., Liu, X., Yan, J.: The robustness of hollow
captchas. In: Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security - CCS ’13. pp. 1075-1086. New York, USA (2013)

11.

12.

13.

14.

Gao, H., Yan, J., et al: A simple generic attack on text captchas. In: Proc. Network
and Distributed System Security Symposium (NDSS). San Diego, USA (2016)
Watson, R.N.M.: Exploiting concurrency vulnerabilities in system call wrappers.
In: First USENIX Workshop on Offensive Technologies (WOOT 07) (2007)

Yan, J., El Ahmad, A.S.: Breaking visual captchas with naive pattern recognition
algorithms. In: 23rd annual Computer Security Applications Conference - ACSAC
’07. USA (2007)

Yan, J., El Ahmad, A.S.: A low-cost attack on a microsoft captcha. In: Proceedings
of the 15th ACM conference on Computer and communications security - CCS ’08.
pp. 543-554. New York, NY, USA (2008)

	Failures of Security APIs: A New Case

