
RESE ARCH FE ATURE

COMPUTER 54 Published by the IEEE Computer Society 0018-9162/11/$26.00 © 2011 IEEE

nerable to protocol-level attacks. For example, a spammer
could shift the load of solving Captcha challenges to porn
site visitors; a spammer could also outsource such a task to
people in countries where cheap labor is available. System
design is also important. For example, hackers could bypass
some early Captchas simply by reusing a known challenge
image’s session ID.3

We have explored another aspect of Captchas’ secu-
rity—namely, their robustness, or the strength of their
resistance to computer programs written to automati-
cally solve Captcha tests. We found that numerous recent
Captchas, including the schemes widely deployed by
Microsoft, Yahoo, and Google as well as others less well
known, could be broken with high success using simple
but novel attack strategies that exploited fatal design
errors in each scheme.

In contrast to current techniques used to improve
Captchas’ robustness, developed primarily by the computer
vision and document analysis and pattern recognition com-
munities, we advocate a security engineering approach
that applies adversarial thinking skills. Although we have
focused on text-based Captchas, some of the lessons we
have learned also apply to other types.

A Captcha—completely automated public Turing
test to tell computers and humans apart, also
known as a human interaction proof—is a pro-
gram that generates and grades tests that are

human solvable but intended to be beyond current com-
puters’ capabilities.1 This technology often makes use of
a hard, open AI problem and is now a standard defense
on commercial websites against undesirable or malicious
Internet bot programs. For example, Google, Microsoft,
and Yahoo have all deployed Captchas to make it more
difficult for spammers to harvest free e-mail accounts.

In 1996, Moni Naor first proposed using automated
Turing tests to verify that a human, rather than a bot, was
making a query to a service over the Web.2 AltaVista pat-
ented a similar idea in 1998. A research team at Carnegie
Mellon University (CMU) led by Manuel Blum and Luis von
Ahn coined the term Captcha in 2000, and they played a
major role in popularizing the technology. To date, the most
widely used Captchas are text-based schemes that prompt
users to recognize distorted characters, which state-of-the-
art pattern recognition programs supposedly cannot do.

Because a Captcha’s role is effectively the same as a
simple challenge-response protocol, Captchas are vul-

Captchas are a standard defense on commercial websites against un-
desirable or malicious Internet bot programs, but widely deployed
schemes can be broken with simple but novel attacks. Applying secu-
rity engineering expertise to the design of Captchas can significantly
improve their robustness.

Jeff Yan and Ahmad Salah El Ahmad
Newcastle University

Captcha
Robustness:
A Security
Engineering
Perspective

55FEBRUARY 2011

A commonly accepted goal for Captcha design is that
automated attacks should not be more than 0.01 percent
successful but that the human success rate should be at
least 90 percent.7 There is thus a tradeoff between Captcha
robustness and usability.9

CAPTCHASERVICE.ORG SCHEMES
Captchaservice.org was a publicly available Web service

that Tim Converse established in 2005 for the sole purpose
of generating Captcha challenges.10 We examined four of
the Captcha schemes provided by this service: word_image,
random_letters_image, user_string_image, and number_
puzzle_text_image. Figure 1a shows a challenge example
for each.

As deployed from 2006 to 2007, all four schemes based
their robustness on a random-shearing distortion technique
applied both vertically and horizontally to a challenge
image. Converse explained that “the pixels in each column

BACKGROUND
Specialized computer vision

algorithms had success breaking
some early text-based Captchas.
For example, Greg Mori and
Jitendra Malik designed so-
phisticated object-recognition
algorithms to break EZ-Gimpy
(92 percent success) and Gimpy
(33 percent success), two early
schemes created by the CMU
team.4 Gabriel Moy and colleagues
later developed distortion estima-
tion techniques to break EZ-Gimpy
(99 percent success) and Gimpy-r
(78 percent success).5

Microsoft researchers attacked
numerous Captchas from the Web
using machine-learning algo-
rithms, largely neural networks,
achieving a success rate ranging
from 4.89 percent to 66.2 per-
cent. They argued that breaking
a challenge in which the charac-
ters’ positions are known a priori
is a pure recognition problem—
a trivia l task with standard
machine-learning techniques;
otherwise, such methods do not ef-
fectively locate the characters, let
alone recognize them. In general,
identifying character locations
in the right order, or segmenta-
tion, remains an open problem
that is computationally expensive
and often combinatorially hard.
Researchers therefore suggested that robust text-based
schemes should rely on the difficulty of finding where
each character is rather than what it is.6-8 In other words,
Captchas should be segmentation resistant.

A common method to estimate a Captcha’s robustness
is as follows: given the average percentage of challenges
that can be entirely segmented correctly, s, and an achiev-
able individual character recognition rate, r, the estimated
overall success rate for breaking a scheme is s × rn, where
n is the average length of text strings in the scheme.

A Captcha’s character set is also relevant to the scheme’s
security. Given the character set’s size, c, the chance for a
blind guess to successfully recover a challenge that uses
a random string of n characters will be 1/cn. If the scheme
uses English words only, then an attack can try to collect
all the words used to launch a dictionary attack. Given
w number of words, the dictionary attack will have a
success rate of 1/w.

Figure 1. Four Captchaservice.org schemes. (a) Example challenges for each scheme
(clockwise: word_image, random_letters_image, number_puzzle_text_image, user_
string_image). The schemes used the same distortion technique but could differ in
alphabet sets and text lengths. Each used two colors, with the challenge text being the
foreground color. (b) Letters A-Z and their pixel counts. J and L, K and O, and P and V had
the same pixel counts. (c) Color-filling segmentation. On the left is an original image, and
on the right is the segmented image.

0

50

100

150

200

250

300

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Letter

(b)

(a)

(c)

Pix
el

co
un

t

RESE ARCH FE ATURE

COMPUTER 56

of the image are translated up or down by an amount that
varies randomly yet smoothly from one column to the next.
Then the same kind of translation is applied to each row of
pixels (with a smaller amount of translation on average).”10

The main differences between the schemes were the
alphabet set and text length. The word_image and random_
letters_image schemes used six capital letters. The
number_puzzle_text_image scheme used only numbers,
which could be up to seven digits. The user_string_image
scheme accepted any user-supplied string of at most 15
characters that consisted of digits and uppercase and
lowercase letters.

Random-shearing distortion provided all four Captcha
schemes, with resistance ranging from reasonable to excel-
lent in terms of being decoded by a top commercial optical
character recognition product.11 However, we usually could
recognize all characters embedded in a challenge by
exploiting common critical design flaws in the schemes.

One major vulnerability we identified is that although
a character was distorted into a different shape each time,
it almost always consisted of a constant number of fore-
ground pixels—that is, it had the same pixel count in all
challenges generated. Furthermore, as Figure 1b shows,
most of the characters had a distinct pixel count.

A second critical flaw was that because each challenge
used only two colors, with the challenge text being the fore-
ground color, few characters connected with each other.
This enabled us to use a simple color-filling segmentation
(CFS) algorithm to identify each character in a challenge
image in the right order. The algorithm first detected
a foreground pixel and traced its foreground neighbors
until it had traversed all pixels in a connected component.
Next, it located a foreground pixel outside the detected
component(s) and started another traversal process to iden-
tify an adjacent component. This process continued until
all connected components in the challenge were located.
Figure 1c shows the result of applying CFS to a challenge in
which the number of colors used to fill the image is equal
to the number of characters in the image.

Based on these two vulnerabilities, we designed the
following six-step attack against the Captchaservice.org
schemes:

1. Build a character-pixel count lookup table for the alpha-
bet set used in a scheme.

2. Remove small noise dots, if any, in a challenge
image—they are easily distinguishable as they have a

pixel count much smaller than that of any legitimate
character.

3. Divide the challenge into multiple segments with CFS.
4. Count the number of foreground pixels in each

segment.
5. Look up the pixel count in the table to identify each

candidate character. If a pixel count cannot be located
in the table, the corresponding segment is very likely
the component of a broken character. Combine this
segment with its left and right neighbor segments,
respectively, and treat the combination that returns a
meaningful result in the lookup table as a single char-
acter. When both combinations are plausible, randomly
choose one of them.

6. Distinguish characters with identical pixel counts such
as J and L, K and O, and P and V by analyzing their
geometric layouts with simple algorithms. (For the
word_image scheme, which used an English word in
each challenge, spell checking is an alternative method
for distinguishing between characters with identical
pixel counts.)

This simple attack was almost 100 percent success-
ful at breaking each target scheme, and did so quickly.
For example, it achieved 98 percent success breaking
the random_letters_image scheme and took only around
16 milliseconds per challenge on an ordinary desktop
computer with a Pentium 2.8-GHz CPU with 512 Mbytes of
memory. This was much faster than previous attacks we
used,11 as CFS significantly outperformed older segmenta-
tion methods.

MICROSOFT CAPTCHA
Microsoft’s Captcha is the product of an interdisciplinary

team of experts in document processing and understand-
ing, machine learning, human-computer interaction, and
security, which established today’s widely accepted seg-
mentation-resistance principle and robustness criteria. The
company first deployed the scheme in Hotmail’s user reg-
istration system in 2002 and has continued to extensively
improve its robustness and usability.7,8 Microsoft online
services including Hotmail, MSN, and Windows Live have
used variations of the Captcha for years.

Figure 2a shows four example challenges generated by
the Captcha as deployed in 2007. The main antisegmenta-
tion measure is the random use of nonintersecting and
intersecting arcs of different thicknesses. Some arcs are
as thick as the thick portions of characters and, to ensure
usability, do not directly intersect with any characters.
Other arcs are as thin as the thin portions of characters and
intersect with thick arcs, characters, or both. Both types of
arcs are the same color as challenge text. The designers’
rationale was that the arcs themselves are good candidates
for false characters, and thus the mix of random arcs and

Although a character was distorted
into a different shape each time, it had
the same pixel count in all challenges
generated.

57FEBRUARY 2011

or bottom image borders. In addition, characters were hori-
zontally juxtaposed, but never vertically. Based on these
observations, we identified typical relative position patterns
that could pinpoint which object was an arc in a chunk.
Table 1 shows some of the patterns we identified along
with real examples. This method of examining the relative

characters could confuse state-of-
the-art segmentation methods.7

Segmenting the Microsof t
Captcha requires the ability to dis-
tinguish arcs and valid characters,
which we achieved in a simple
attack illustrated in Figure 2b.

First, after some simple pre-
processing including binarization,
which converts a color challenge
image to a black-and-white one,
we applied a standard method
to vertically segment the chal-
lenge into several chunks, each of
which might contain one or more
characters. Vertical segmentation
involves mapping the image to
a histogram that represents the
number of foreground pixels per
column in the image, then sepa-
rating the image into chunks by
cutting through columns that
have no foreground pixels. Step
1 in Figure 2b shows a challenge
divided into two chunks.

Next, as shown in Step 2 in
Figure 2b, we applied CFS to each
chunk to identify all the connected
components, or objects, which
can be arcs, characters, connected arcs, or connected
characters.

Knowing the relative positions of objects in a chunk,
we could discriminate arcs and real characters with high
success. For example, characters were typically closer to
the chunk’s baseline, whereas arcs were closer to the top

Table 1. Objects’ relative position patterns in Microsoft Captcha challenge image chunks.

Pattern Description Example Implication

O1 O2
O3

Two objects more or less align with the baseline;
a third object is under either of them

O3 is an arc and can be removed

O3
O1 O2

Two objects more or less align with the baseline;
a third object is on top of either of them

O3 is an arc and can be removed

O1 O2 O3
O4

Three objects more or less align along the baseline;
a fourth object is under any of them

O4 is an arc and can be removed

O3
O1 O2

O4

Two objects more or less align with the baseline;
a third object is on top of either of them, and a
fourth object is under either of them

O3 and O4 are arcs and can be removed

O1
O2

Two objects are vertically juxtaposed
 or

The object that is less aligned with the
baseline is an arc and can be removed

Figure 2. Microsoft Captcha. (a) Four example challenges. (b) A successful segmentation
attack. Step 1: vertical segmentation, which divides a preprocessed image into chunks
with the help of a histogram. Step 2: color-filling segmentation, which identifies separate
objects in each chunk. Step 3: arc removal, which largely relies on relative position check-
ing. After removing the arcs, we update the image’s histogram and segment the image
into more chunks. Step 4: identifying and then segmenting the remaining connected
objects. The final result identifies eight valid characters in the right order, with each
displayed in a different color and most arcs deleted.

(b)

(a)

1

2

4

3

RESE ARCH FE ATURE

COMPUTER 58

to adopt Captcha technology, and since then it has
upgraded its schemes numerous times. We ex-
amined a version that the company rolled out in
March 2008 specifically designed to be segmenta-
tion resistant.

As Figure 4a shows, challenge texts in this Capt-
cha were compacted and characters usually either
touched adjacent characters or were connected by
intersecting random lines. Just one week after its
deployment, however, we discovered critical flaws
in this scheme that could be easily exploited.

In this Yahoo Captcha, the length of text embed-
ded in a challenge often varied and was intended
to be unpredictable. This is a good design feature,
as it is hard or even impossible for an automated
attack to segment a challenge if the number of
characters in the challenge is unknown. However,
the scheme had a key vulnerability: we could es-
timate the number of characters in a challenge
more than 68 percent of the time by measuring the
width of the text in the challenge image.

Another vulnerability in the Captcha was that it
generated two main types of challenges that could

be differentiated by a simple program. As the left image
in Figure 4a shows, angular challenges employed a trans-
formation that shifts character pixels by an angle while
maintaining the characters’ shapes—a process similar to
changing characters from a regular shape to italic form
but in an opposite direction. Regular challenges like the
right image shown in Figure 4a did not undergo such a
transformation.

We designed two simple segmentation algorithms to deal
with each type of challenge, together with associated rules
to identify which algorithm to use, and achieved a success
rate of around 33.4 percent for segmentation. We estimate
that the Yahoo Captcha scheme can be broken 25.9 percent
of the time.

Segmenting angular challenges. After preprocessing
steps such as binarization, CFS, and arc removal, we first
projected a challenge at an angle of 33.5 degrees to the
vertical—we observed that the angle used for angular
transformation was almost always the same—to create
a histogram that represented the number of foreground
pixels per projecting line in the image. We then used the
histogram’s span (length) to estimate n, the number of
characters in the challenge. Next, we divided the histo-
gram into n even chunks, which yielded n + 1 boundary
points in the x-axis. Starting with each point, we drew a
line at an angle of 56.5 degrees to the horizontal to cut
the challenge image into n segments, each presumed to
contain a single character.

The left image in Figure 4b is an example of angular
segmentation that correctly estimated the number of char-
acters in the challenge and successfully segmented them.

position of objects, as Step 3 in Figure 2b shows, identified
and removed most arcs in the challenge.

This Microsoft Captcha had other vulnerabilities: a valid
character’s pixel count was larger than that of an arc, and
the length of text strings embedded in challenges was
always eight. These flaws enabled us to accurately guess
which object contained connected characters and how
many such characters there were, and to properly seg-
ment the connected characters. Step 4 in Figure 2b gives
an example of the final segmentation result.

Overall, our segmentation attack on this Captcha was
more than 90 percent successful, and we estimated that
Microsoft’s scheme could be broken more than 60 percent
of the time.12

GOOGLE AND YAHOO CAPTCHAS
Google and Yahoo have also been deploying Captchas

to protect their online services.

Google Captcha
To resist segmentation, Google’s Captcha crowds charac-

ters together—that is, lets them touch or overlap—as Figure
3a shows. However, we correctly segmented 12 out of 100
random samples collected between December 2007 and
February 2008 using CFS alone. Figure 3b shows one chal-
lenge vulnerable to such an attack. The average text length
in the samples was 6.25, leading to an overall success rate
of 8.7 percent in breaking this scheme.

Yahoo Captcha
In 2000, Yahoo became one of the first major websites

Figure 3. Google Captcha. (a) Example challenges. The far-right
challenge is (b) vulnerable to CFS attack.

(a)

(b)

Figure 4. Yahoo Captcha. (a) Example challenges: angular (left) and regu-
lar (right). (b) Both types of challenges are vulnerable to segmentation.

(a)

(b)

59FEBRUARY 2011

The simple techniques we used, including the pixel-
count method, CFS, and histogram analysis by projecting
an image vertically, at a particular angle, or both vertically
and horizontally (as in our previous work on an earlier
Yahoo scheme12), are effective across the board. Therefore,
we believe such techniques provide a good first set of tools
for examining the strength of text-based schemes, in par-
ticular their segmentation resistance.

All the invariants described thus far are pixel-level
invariants, so named because they are exploitable by
image processing methods at the pixel level. In addition
to pixel-level invariants, there are invariants inherent in
Captcha text strings that can also be exploited—these
string-level invariants are independent of any pixel-level
features. Typically, the linguistic model a scheme employs
to generate text strings creates string-level invariants. For
example, in Microsoft’s 2007 Captcha, the length of text
strings embedded in the challenge image was constant,
and this vulnerability in the design helped us to identify
and segment connected characters.

If a Captcha uses only dictionary words, this will create
another string-level invariant, as the dictionary limits the
choice of possible strings. Exploiting such a string-level
invariant alone could lead to an attack. For example, when
a Captcha only uses a small collection of English words, a
dictionary attack could be highly successful.

String-level invariance can be exploited in other ways.
For example, in attacking the Captchaservice.org text_
image scheme, a pattern-recognition algorithm we designed
earlier achieved only limited success in terms of character
recognition, but a dictionary attack complemented the al-
gorithm well to obtain a good overall result; that is, with the
help of a dictionary, we exploited a weakness in the con-
struction of challenge text strings—all were six-character
English words—to successfully guess the remaining char-
acters initially unrecognized by the pattern-recognition
algorithm.11 However, our new attack exploiting pixel-level
invariance alone turns out to be more efficient.

In sum, the failures of the Captchas we analyzed are
largely due to invariants at the pixel level, string level, or
both. The ultimate defense against attacks like ours is to
remove exploitable invariance by employing proper tech-
niques such as randomization. For example, pixel-level
invariants can be removed in the following ways. In the
Captchaservice.org schemes, an option is to vary a char-
acter’s pixel count in different challenges or simply make

Segmenting regular challenges. After preprocessing,
we directly estimated n using text width. If there was only
a single connected component (object), we evenly and ver-
tically cut it into n chunks, each being a segment. If there
were two or more objects, we used their relative size to esti-
mate the number of characters in each object i, denoted by
n

i
. For example, if we estimated that a challenge contained

five characters and there were two objects in the challenge,
we determined that the object with a larger width contained
three characters and the other object contained two char-
acters. We then evenly and vertically divided object i into
n

i
 chunks, each being a segment.
The right image in Figure 4b is an example of regular

segmentation that correctly estimated the number of char-
acters in the challenge and, by simply dividing the text
vertically into six even segments, successfully segmented
the text.

INVARIANCE AS A ‘MAGIC WEAPON’
In essence, all our attacks searched for and exploited

invariants hidden in Captchas. For example, a major
invariant in the Captchaservice.org schemes was character
pixel count, which was usually distinct among different
characters but remained constant for the same character
under different distortions.

The invariants in the 2007 Microsoft Captcha included
objects’ relative position patterns in image chunks, which
played a major role in differentiating arcs and charac-
ters. The invariant in the Google Captcha we examined
was white space (gaps) between characters. The Yahoo
scheme’s invariants included a correlation between text
length and width in the challenge image, a very lim-
ited number of patterns for global shape (regular versus
angular), and a fixed angle for image transformation.
We exploited other invariants to break an earlier Yahoo
Captcha.12

We found that invariants, once identified, were easy to
exploit. Alarmingly, some of the attacks we developed for
simplistic Captchas were widely applicable to ones care-
fully designed by major companies. For example, the CFS
method we used to segment multiple Captchaservice.org
schemes contributed significantly to our successful attacks
on the Microsoft, Google, and Yahoo Captchas. Similarly,
the pixel-count attack not only achieved surprising suc-
cess recognizing individual letters in many simplistic
schemes,11 but it also helped us to break the Microsoft and
Yahoo Captchas by differentiating between valid charac-
ters and random noise.12

Exploiting invariants is a classic cryptanalysis strategy.
For example, differential cryptanalysis works by observ-
ing that a subset of pairs of plaintexts has an invariant
relationship preserved through numerous cipher rounds.13
Our work demonstrates that exploiting invariants is also
effective for studying Captcha robustness.

The ultimate defense against attacks
is to remove exploitable invariance by
employing proper techniques such as
randomization.

RESE ARCH FE ATURE

COMPUTER 60

 Selected CS articles and columns are available for free at
 http://ComputingNow.computer.org.

 2. M. Naor, “Verification of a Human in the Loop, or Identifi-
cation via the Turing Test,” unpublished manuscript, 1996;
www.wisdom.weizmann.ac.il/~naor/PAPERS/human.pdf.

 3. H. Yeend, “Breaking CAPTCHAs without Using OCR,”
blog entry, 2005; www.puremango.co.uk/cm_breaking_
captcha_115.php.

 4. G. Mori and J. Malik, “Recognising Objects in Adversarial
Clutter: Breaking a Visual CAPTCHA,” Proc. 2003 IEEE Conf.
Computer Vision and Pattern Recognition (CVPR 03), vol. 1,
IEEE CS Press, 2003, pp. 134-141.

 5. G. Moy et al., “Distortion Estimation Techniques in Solving
Visual CAPTCHAs,” Proc. 2004 IEEE Conf. Computer Vision
and Pattern Recognition (CVPR 04), vol. 2, IEEE CS Press,
2004, pp. 23-28.

 6. K. Chellapilla and P.Y. Simard, “Using Machine Learning to
Break Visual Human Interaction Proofs (HIPs),” Advances
in Neural Processing Systems 17 (NIPS 04), MIT Press, 2004,
pp. 265-272.

 7. K. Chellapilla et al., “Building Segmentation Based Human-
Friendly Human Interaction Proofs (HIPs),” Proc. 2nd Int’l
Workshop Human Interaction Proofs (HIP 05), LNCS 3517,
Springer, 2005, pp. 1-26.

 8. P.Y. Simard et al., “Using Character Recognition and Seg-
mentation to Tell Computers from Humans,” Proc. 7th Int’l
Conf. Document Analysis and Recognition (ICDAR 03), vol.
1, IEEE CS Press, 2003, pp. 418-423.

 9. J. Yan and A.S. El Ahmad, “Usability of CAPTCHAs, Or Us-
ability Issues in CAPTCHA Design,” Proc. 4th Symp. Usable
Privacy and Security (SOUPS 08), ACM Press, 2008, pp.
44-52.

 10. T. Converse, “CAPTCHA Generation as a Web Service,” Proc.
2nd Int’l Workshop Human Interactive Proofs (HIP 05), LNCS
3517, Springer, 2005, pp. 82-96.

 11. J. Yan and A.S. El Ahmad, “Breaking Visual CAPTCHAs with
Naïve Pattern Recognition Algorithms,” Proc. 23rd Ann.
Computer Security Applications Conf. (ACSAC 07), IEEE CS
Press, 2007, pp. 279-291.

 12. J. Yan and A.S. El Ahmad, “A Low-Cost Attack on a Micro-
soft CAPTCHA,” Proc. 15th ACM Conf. Computer and Comm.
Security (CCS 08), ACM Press, 2008, pp. 543-554.

 13. E. Biham and A. Shamir, Differential Cryptanalysis of the
Data Encryption Standard, Springer, 1993.

Jeff Yan is a lecturer in the School of Computing Science at
Newcastle University, UK, where he is a founding research direc-
tor of the Center for Cybercrime and Computer Security, and
currently holds a visiting faculty post with the Department of
Information Engineering, Chinese University of Hong Kong. His
recent research includes systems security and human aspects
of security. Yan received a PhD in computer security from Cam-
bridge University. Contact him at jeff.yan@ncl.ac.uk.

Ahmad Salah El Ahmad is a PhD student in the School of Com-
puting Science at Newcastle University. His research interests
include computer security, particularly the design of secure and
usable Captcha systems. El Ahmad received an MSc in comput-
ing science from Newcastle University. He is a student member
of IEEE. Contact him at ahmad.salah-el-ahmad@ncl.ac.uk.

all characters have the same pixel count all the time. In
the Yahoo Captcha, it is possible to introduce more types
of global shape patterns and have them occur in random
order, thus making it harder for computers to differentiate
each type. And in the Google Captcha, an option is to simply
remove the white space between characters (this might
cause usability issues and thus requires careful treatment).
To remove string-level invariants, an option for Captcha
designers is to avoid using dictionary words and set a varied,
unpredictable length for embedded text strings.

A lthough the Captchas we broke were better designed
than earlier ones deployed from 2000 to 2004,
Captcha robustness did not fundamentally improve.

As a consequence of our work, Captchaservice.org ceased
to offer its service, and Microsoft, Yahoo, and Google all
modified their schemes.

There are two main explanations for the lack of ro-
bustness in the Captchas we analyzed. First, their design
was almost exclusively based on research in computer
vision, document recognition, and machine learning.
However, our attacks did not rely on sophisticated, spe-
cialized algorithms. Instead, we applied our training in
security engineering to identify critical vulnerabilities in
each of the schemes, especially invariants at the pixel and
string levels, and then design simple but novel methods
to exploit those flaws. Second, a good Captcha requires
striking the right balance between robustness and us-
ability, which often have subtle influences on each other.
This makes Captcha design a challenging task. Current
understanding of how to do this is limited, and more
research is needed.

As an aside, home-brewed Captchas seem to be a bad
idea, just like home-brewed cryptography and security
systems. Properly designing a Captcha requires consider-
able skill, and even experienced designers make mistakes.
The devil is in the details. Any scheme should be carefully
crafted and implemented by highly qualified people, and
publicly and independently vetted before deployment.

Our experience suggests that Captchas will evolve in
a process similar to cryptography, digital watermarking,
and the like, with successful attacks leading to the develop-
ment of more robust systems. Security engineers will play
a major role in this process.

Acknowledgment
We thank the anonymous reviewers whose comments
helped improve this article.

References
 1. L. von Ahn, M. Blum, and J. Langford, “Telling Humans and

Computer Apart Automatically: How Lazy Cryptographers
Do AI,” Comm. ACM, vol. 47, no. 2, 2004, pp. 57-60.

