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nerable to protocol-level attacks. For example, a spammer 
could shift the load of solving Captcha challenges to porn 
site visitors; a spammer could also outsource such a task to 
people in countries where cheap labor is available. System 
design is also important. For example, hackers could bypass 
some early Captchas simply by reusing a known challenge  
image’s session ID.3

We have explored another aspect of Captchas’ secu-
rity—namely, their robustness, or the strength of their 
resistance to computer programs written to automati-
cally solve Captcha tests. We found that numerous recent  
Captchas, including the schemes widely deployed by 
Microsoft, Yahoo, and Google as well as others less well 
known, could be broken with high success using simple 
but novel attack strategies that exploited fatal design 
errors in each scheme. 

In contrast to current techniques used to improve  
Captchas’ robustness, developed primarily by the computer 
vision and document analysis and pattern recognition com-
munities, we advocate a security engineering approach 
that applies adversarial thinking skills. Although we have 
focused on text-based Captchas, some of the lessons we 
have learned also apply to other types. 

A Captcha—completely automated public Turing 
test to tell computers and humans apart, also 
known as a human interaction proof—is a pro-
gram that generates and grades tests that are 

human solvable but intended to be beyond current com-
puters’ capabilities.1 This technology often makes use of 
a hard, open AI problem and is now a standard defense 
on commercial websites against undesirable or malicious 
Internet bot programs. For example, Google, Microsoft, 
and Yahoo have all deployed Captchas to make it more 
difficult for spammers to harvest free e-mail accounts.

In 1996, Moni Naor first proposed using automated 
Turing tests to verify that a human, rather than a bot, was 
making a query to a service over the Web.2 AltaVista pat-
ented a similar idea in 1998. A research team at Carnegie 
Mellon University (CMU) led by Manuel Blum and Luis von 
Ahn coined the term Captcha in 2000, and they played a 
major role in popularizing the technology. To date, the most 
widely used Captchas are text-based schemes that prompt 
users to recognize distorted characters, which state-of-the-
art pattern recognition programs supposedly cannot do.

Because a Captcha’s role is effectively the same as a 
simple challenge-response protocol, Captchas are vul-
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A commonly accepted goal for Captcha design is that 
automated attacks should not be more than 0.01 percent 
successful but that the human success rate should be at 
least 90 percent.7 There is thus a tradeoff between Captcha 
robustness and usability.9

CAPTCHASERVICE.ORG SCHEMES
Captchaservice.org was a publicly available Web service 

that Tim Converse established in 2005 for the sole purpose 
of generating Captcha challenges.10 We examined four of 
the Captcha schemes provided by this service: word_image, 
random_letters_image, user_string_image, and number_
puzzle_text_image. Figure 1a shows a challenge example 
for each. 

As deployed from 2006 to 2007, all four schemes based 
their robustness on a random-shearing distortion technique 
applied both vertically and horizontally to a challenge 
image. Converse explained that “the pixels in each column 

BACKGROUND
Specialized computer vision 

algorithms had success breaking 
some early text-based Captchas. 
For example, Greg Mori and  
Jitendra Malik designed so-
phisticated object-recognition 
algorithms to break EZ-Gimpy 
(92 percent success) and Gimpy 
(33 percent success), two early 
schemes created by the CMU 
team.4 Gabriel Moy and colleagues 
later developed distortion estima-
tion techniques to break EZ-Gimpy 
(99 percent success) and Gimpy-r 
(78 percent success).5 

Microsoft researchers attacked 
numerous Captchas from the Web 
using machine-learning algo-
rithms, largely neural networks, 
achieving a success rate ranging 
from 4.89 percent to 66.2 per-
cent. They argued that breaking 
a challenge in which the charac-
ters’ positions are known a priori 
is a pure recognition problem— 
a trivia l task with standard 
machine-learning techniques; 
otherwise, such methods do not ef-
fectively locate the characters, let 
alone recognize them. In general, 
identifying character locations 
in the right order, or segmenta-
tion, remains an open problem 
that is computationally expensive 
and often combinatorially hard. 
Researchers therefore suggested that robust text-based 
schemes should rely on the difficulty of finding where 
each character is rather than what it is.6-8 In other words, 
Captchas should be segmentation resistant.

A common method to estimate a Captcha’s robustness 
is as follows: given the average percentage of challenges 
that can be entirely segmented correctly, s, and an achiev-
able individual character recognition rate, r, the estimated 
overall success rate for breaking a scheme is s × rn, where 
n is the average length of text strings in the scheme. 

A Captcha’s character set is also relevant to the scheme’s 
security. Given the character set’s size, c, the chance for a 
blind guess to successfully recover a challenge that uses 
a random string of n characters will be 1/cn. If the scheme 
uses English words only, then an attack can try to collect 
all the words used to launch a dictionary attack. Given  
w number of words, the dictionary attack will have a 
success rate of 1/w. 

Figure 1. Four Captchaservice.org schemes. (a) Example challenges for each scheme 
(clockwise: word_image, random_letters_image, number_puzzle_text_image, user_
string_image). The schemes used the same distortion technique but could differ in 
alphabet sets and text lengths. Each used two colors, with the challenge text being the 
foreground color. (b) Letters A-Z and their pixel counts. J and L, K and O, and P and V had 
the same pixel counts. (c) Color-filling segmentation. On the left is an original image, and 
on the right is the segmented image.
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of the image are translated up or down by an amount that 
varies randomly yet smoothly from one column to the next. 
Then the same kind of translation is applied to each row of 
pixels (with a smaller amount of translation on average).”10 

The main differences between the schemes were the 
alphabet set and text length. The word_image and random_
letters_image schemes used six capital letters. The 
number_puzzle_text_image scheme used only numbers, 
which could be up to seven digits. The user_string_image 
scheme accepted any user-supplied string of at most 15 
characters that consisted of digits and uppercase and  
lowercase letters. 

Random-shearing distortion provided all four Captcha 
schemes, with resistance ranging from reasonable to excel-
lent in terms of being decoded by a top commercial optical 
character recognition product.11 However, we usually could 
recognize all characters embedded in a challenge by  
exploiting common critical design flaws in the schemes. 

One major vulnerability we identified is that although 
a character was distorted into a different shape each time, 
it almost always consisted of a constant number of fore-
ground pixels—that is, it had the same pixel count in all 
challenges generated. Furthermore, as Figure 1b shows, 
most of the characters had a distinct pixel count.

A second critical flaw was that because each challenge 
used only two colors, with the challenge text being the fore-
ground color, few characters connected with each other. 
This enabled us to use a simple color-filling segmentation 
(CFS) algorithm to identify each character in a challenge 
image in the right order. The algorithm first detected 
a foreground pixel and traced its foreground neighbors 
until it had traversed all pixels in a connected component. 
Next, it located a foreground pixel outside the detected 
component(s) and started another traversal process to iden-
tify an adjacent component. This process continued until 
all connected components in the challenge were located. 
Figure 1c shows the result of applying CFS to a challenge in 
which the number of colors used to fill the image is equal 
to the number of characters in the image. 

Based on these two vulnerabilities, we designed the 
following six-step attack against the Captchaservice.org 
schemes: 

1.  Build a character-pixel count lookup table for the alpha-
bet set used in a scheme. 

2.  Remove small noise dots, if any, in a challenge 
image—they are easily distinguishable as they have a 

pixel count much smaller than that of any legitimate 
character.

3.  Divide the challenge into multiple segments with CFS. 
4.  Count the number of foreground pixels in each 

segment.
5.  Look up the pixel count in the table to identify each 

candidate character. If a pixel count cannot be located 
in the table, the corresponding segment is very likely 
the component of a broken character. Combine this 
segment with its left and right neighbor segments,  
respectively, and treat the combination that returns a 
meaningful result in the lookup table as a single char-
acter. When both combinations are plausible, randomly 
choose one of them. 

6.  Distinguish characters with identical pixel counts such 
as J and L, K and O, and P and V by analyzing their 
geometric layouts with simple algorithms. (For the 
word_image scheme, which used an English word in 
each challenge, spell checking is an alternative method 
for distinguishing between characters with identical 
pixel counts.)

This simple attack was almost 100 percent success-
ful at breaking each target scheme, and did so quickly. 
For example, it achieved 98 percent success breaking 
the random_letters_image scheme and took only around  
16 milliseconds per challenge on an ordinary desktop 
computer with a Pentium 2.8-GHz CPU with 512 Mbytes of 
memory. This was much faster than previous attacks we 
used,11 as CFS significantly outperformed older segmenta-
tion methods. 

MICROSOFT CAPTCHA
Microsoft’s Captcha is the product of an interdisciplinary 

team of experts in document processing and understand-
ing, machine learning, human-computer interaction, and 
security, which established today’s widely accepted seg-
mentation-resistance principle and robustness criteria. The 
company first deployed the scheme in Hotmail’s user reg-
istration system in 2002 and has continued to extensively 
improve its robustness and usability.7,8 Microsoft online 
services including Hotmail, MSN, and Windows Live have 
used variations of the Captcha for years. 

Figure 2a shows four example challenges generated by 
the Captcha as deployed in 2007. The main antisegmenta-
tion measure is the random use of nonintersecting and 
intersecting arcs of different thicknesses. Some arcs are 
as thick as the thick portions of characters and, to ensure  
usability, do not directly intersect with any characters. 
Other arcs are as thin as the thin portions of characters and 
intersect with thick arcs, characters, or both. Both types of 
arcs are the same color as challenge text. The designers’ 
rationale was that the arcs themselves are good candidates 
for false characters, and thus the mix of random arcs and 

Although a character was distorted 
into a different shape each time, it had 
the same pixel count in all challenges 
generated. 
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or bottom image borders. In addition, characters were hori-
zontally juxtaposed, but never vertically. Based on these 
observations, we identified typical relative position patterns 
that could pinpoint which object was an arc in a chunk. 
Table 1 shows some of the patterns we identified along 
with real examples. This method of examining the relative 

characters could confuse state-of-
the-art segmentation methods.7 

Segmenting the Microsof t 
Captcha requires the ability to dis-
tinguish arcs and valid characters, 
which we achieved in a simple 
attack illustrated in Figure 2b. 

First, after some simple pre-
processing including binarization, 
which converts a color challenge 
image to a black-and-white one, 
we applied a standard method 
to vertically segment the chal-
lenge into several chunks, each of 
which might contain one or more 
characters. Vertical segmentation 
involves mapping the image to 
a histogram that represents the 
number of foreground pixels per 
column in the image, then sepa-
rating the image into chunks by 
cutting through columns that 
have no foreground pixels. Step 
1 in Figure 2b shows a challenge 
divided into two chunks.

Next, as shown in Step 2 in 
Figure 2b, we applied CFS to each 
chunk to identify all the connected 
components, or objects, which 
can be arcs, characters, connected arcs, or connected 
characters.

Knowing the relative positions of objects in a chunk, 
we could discriminate arcs and real characters with high 
success. For example, characters were typically closer to 
the chunk’s baseline, whereas arcs were closer to the top 

Table 1. Objects’ relative position patterns in Microsoft Captcha challenge image chunks.

Pattern Description Example Implication

O1 O2
O3

Two objects more or less align with the baseline;  
a third object is under either of them

O3 is an arc and can be removed

O3
O1 O2

Two objects more or less align with the baseline;  
a third object is on top of either of them

O3 is an arc and can be removed

O1 O2 O3
O4

Three objects more or less align along the baseline;  
a fourth object is under any of them

O4 is an arc and can be removed

O3
O1 O2

O4

Two objects more or less align with the baseline;  
a third object is on top of either of them, and a  
fourth object is under either of them

O3 and O4 are arcs and can be removed

O1
O2

Two objects are vertically juxtaposed  
                  or

The object that is less aligned with the  
baseline is an arc and can be removed

Figure 2. Microsoft Captcha. (a) Four example challenges. (b) A successful segmentation 
attack. Step 1: vertical segmentation, which divides a preprocessed image into chunks 
with the help of a histogram. Step 2: color-filling segmentation, which identifies separate 
objects in each chunk. Step 3: arc removal, which largely relies on relative position check-
ing. After removing the arcs, we update the image’s histogram and segment the image 
into more chunks. Step 4: identifying and then segmenting the remaining connected 
objects. The final result identifies eight valid characters in the right order, with each 
displayed in a different color and most arcs deleted.
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to adopt Captcha technology, and since then it has 
upgraded its schemes numerous times. We ex-
amined a version that the company rolled out in 
March 2008 specifically designed to be segmenta-
tion resistant. 

As Figure 4a shows, challenge texts in this Capt-
cha were compacted and characters usually either 
touched adjacent characters or were connected by 
intersecting random lines. Just one week after its 
deployment, however, we discovered critical flaws 
in this scheme that could be easily exploited. 

In this Yahoo Captcha, the length of text embed-
ded in a challenge often varied and was intended 
to be unpredictable. This is a good design feature, 
as it is hard or even impossible for an automated 
attack to segment a challenge if the number of 
characters in the challenge is unknown. However, 
the scheme had a key vulnerability: we could es-
timate the number of characters in a challenge 
more than 68 percent of the time by measuring the 
width of the text in the challenge image. 

Another vulnerability in the Captcha was that it 
generated two main types of challenges that could 

be differentiated by a simple program. As the left image 
in Figure 4a shows, angular challenges employed a trans-
formation that shifts character pixels by an angle while 
maintaining the characters’ shapes—a process similar to 
changing characters from a regular shape to italic form 
but in an opposite direction. Regular challenges like the 
right image shown in Figure 4a did not undergo such a 
transformation. 

We designed two simple segmentation algorithms to deal 
with each type of challenge, together with associated rules 
to identify which algorithm to use, and achieved a success 
rate of around 33.4 percent for segmentation. We estimate 
that the Yahoo Captcha scheme can be broken 25.9 percent 
of the time. 

Segmenting angular challenges. After preprocessing 
steps such as binarization, CFS, and arc removal, we first 
projected a challenge at an angle of 33.5 degrees to the 
vertical—we observed that the angle used for angular 
transformation was almost always the same—to create 
a histogram that represented the number of foreground 
pixels per projecting line in the image. We then used the 
histogram’s span (length) to estimate n, the number of 
characters in the challenge. Next, we divided the histo-
gram into n even chunks, which yielded n + 1 boundary 
points in the x-axis. Starting with each point, we drew a 
line at an angle of 56.5 degrees to the horizontal to cut 
the challenge image into n segments, each presumed to 
contain a single character. 

The left image in Figure 4b is an example of angular 
segmentation that correctly estimated the number of char-
acters in the challenge and successfully segmented them. 

position of objects, as Step 3 in Figure 2b shows, identified 
and removed most arcs in the challenge.

This Microsoft Captcha had other vulnerabilities: a valid 
character’s pixel count was larger than that of an arc, and 
the length of text strings embedded in challenges was 
always eight. These flaws enabled us to accurately guess 
which object contained connected characters and how 
many such characters there were, and to properly seg-
ment the connected characters. Step 4 in Figure 2b gives 
an example of the final segmentation result.  

Overall, our segmentation attack on this Captcha was 
more than 90 percent successful, and we estimated that 
Microsoft’s scheme could be broken more than 60 percent 
of the time.12

GOOGLE AND YAHOO CAPTCHAS
Google and Yahoo have also been deploying Captchas 

to protect their online services. 

Google Captcha
To resist segmentation, Google’s Captcha crowds charac-

ters together—that is, lets them touch or overlap—as Figure 
3a shows. However, we correctly segmented 12 out of 100 
random samples collected between December 2007 and 
February 2008 using CFS alone. Figure 3b shows one chal-
lenge vulnerable to such an attack. The average text length 
in the samples was 6.25, leading to an overall success rate 
of 8.7 percent in breaking this scheme. 

Yahoo Captcha
In 2000, Yahoo became one of the first major websites 

Figure 3. Google Captcha. (a) Example challenges. The far-right 
challenge is (b) vulnerable to CFS attack. 

(a)

(b)

Figure 4. Yahoo Captcha. (a) Example challenges: angular (left) and regu-
lar (right). (b) Both types of challenges are vulnerable to segmentation.

(a)

(b)
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The simple techniques we used, including the pixel-
count method, CFS, and histogram analysis by projecting 
an image vertically, at a particular angle, or both vertically 
and horizontally (as in our previous work on an earlier 
Yahoo scheme12), are effective across the board. Therefore, 
we believe such techniques provide a good first set of tools 
for examining the strength of text-based schemes, in par-
ticular their segmentation resistance. 

All the invariants described thus far are pixel-level 
invariants, so named because they are exploitable by 
image processing methods at the pixel level. In addition 
to pixel-level invariants, there are invariants inherent in 
Captcha text strings that can also be exploited—these 
string-level invariants are independent of any pixel-level 
features. Typically, the linguistic model a scheme employs 
to generate text strings creates string-level invariants. For 
example, in Microsoft’s 2007 Captcha, the length of text 
strings embedded in the challenge image was constant, 
and this vulnerability in the design helped us to identify 
and segment connected characters. 

If a Captcha uses only dictionary words, this will create 
another string-level invariant, as the dictionary limits the 
choice of possible strings. Exploiting such a string-level 
invariant alone could lead to an attack. For example, when 
a Captcha only uses a small collection of English words, a 
dictionary attack could be highly successful. 

String-level invariance can be exploited in other ways. 
For example, in attacking the Captchaservice.org text_
image scheme, a pattern-recognition algorithm we designed 
earlier achieved only limited success in terms of character 
recognition, but a dictionary attack complemented the al-
gorithm well to obtain a good overall result; that is, with the 
help of a dictionary, we exploited a weakness in the con-
struction of challenge text strings—all were six-character 
English words—to successfully guess the remaining char-
acters initially unrecognized by the pattern-recognition 
algorithm.11 However, our new attack exploiting pixel-level 
invariance alone turns out to be more efficient.

In sum, the failures of the Captchas we analyzed are 
largely due to invariants at the pixel level, string level, or 
both. The ultimate defense against attacks like ours is to 
remove exploitable invariance by employing proper tech-
niques such as randomization. For example, pixel-level 
invariants can be removed in the following ways. In the 
Captchaservice.org schemes, an option is to vary a char-
acter’s pixel count in different challenges or simply make 

Segmenting regular challenges. After preprocessing, 
we directly estimated n using text width. If there was only 
a single connected component (object), we evenly and ver-
tically cut it into n chunks, each being a segment. If there 
were two or more objects, we used their relative size to esti-
mate the number of characters in each object i, denoted by 
n

i
. For example, if we estimated that a challenge contained 

five characters and there were two objects in the challenge, 
we determined that the object with a larger width contained 
three characters and the other object contained two char-
acters. We then evenly and vertically divided object i into 
n

i
 chunks, each being a segment.
The right image in Figure 4b is an example of regular 

segmentation that correctly estimated the number of char-
acters in the challenge and, by simply dividing the text 
vertically into six even segments, successfully segmented 
the text.

INVARIANCE AS A ‘MAGIC WEAPON’
In essence, all our attacks searched for and exploited 

invariants hidden in Captchas. For example, a major  
invariant in the Captchaservice.org schemes was character 
pixel count, which was usually distinct among different 
characters but remained constant for the same character 
under different distortions. 

The invariants in the 2007 Microsoft Captcha included 
objects’ relative position patterns in image chunks, which 
played a major role in differentiating arcs and charac-
ters. The invariant in the Google Captcha we examined 
was white space (gaps) between characters. The Yahoo 
scheme’s invariants included a correlation between text 
length and width in the challenge image, a very lim-
ited number of patterns for global shape (regular versus  
angular), and a fixed angle for image transformation. 
We exploited other invariants to break an earlier Yahoo 
Captcha.12 

We found that invariants, once identified, were easy to 
exploit. Alarmingly, some of the attacks we developed for 
simplistic Captchas were widely applicable to ones care-
fully designed by major companies. For example, the CFS 
method we used to segment multiple Captchaservice.org 
schemes contributed significantly to our successful attacks 
on the Microsoft, Google, and Yahoo Captchas. Similarly, 
the pixel-count attack not only achieved surprising suc-
cess recognizing individual letters in many simplistic 
schemes,11 but it also helped us to break the Microsoft and 
Yahoo Captchas by differentiating between valid charac-
ters and random noise.12

Exploiting invariants is a classic cryptanalysis strategy. 
For example, differential cryptanalysis works by observ-
ing that a subset of pairs of plaintexts has an invariant 
relationship preserved through numerous cipher rounds.13 
Our work demonstrates that exploiting invariants is also 
effective for studying Captcha robustness. 

The ultimate defense against attacks 
is to remove exploitable invariance by 
employing proper techniques such as 
randomization. 
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all characters have the same pixel count all the time. In 
the Yahoo Captcha, it is possible to introduce more types 
of global shape patterns and have them occur in random 
order, thus making it harder for computers to differentiate 
each type. And in the Google Captcha, an option is to simply 
remove the white space between characters (this might 
cause usability issues and thus requires careful treatment). 
To remove string-level invariants, an option for Captcha 
designers is to avoid using dictionary words and set a varied, 
unpredictable length for embedded text strings. 

A lthough the Captchas we broke were better designed 
than earlier ones deployed from 2000 to 2004, 
Captcha robustness did not fundamentally improve. 

As a consequence of our work, Captchaservice.org ceased 
to offer its service, and Microsoft, Yahoo, and Google all 
modified their schemes. 

There are two main explanations for the lack of ro-
bustness in the Captchas we analyzed. First, their design 
was almost exclusively based on research in computer 
vision, document recognition, and machine learning. 
However, our attacks did not rely on sophisticated, spe-
cialized algorithms. Instead, we applied our training in 
security engineering to identify critical vulnerabilities in 
each of the schemes, especially invariants at the pixel and 
string levels, and then design simple but novel methods 
to exploit those flaws. Second, a good Captcha requires 
striking the right balance between robustness and us-
ability, which often have subtle influences on each other. 
This makes Captcha design a challenging task. Current 
understanding of how to do this is limited, and more 
research is needed. 

As an aside, home-brewed Captchas seem to be a bad 
idea, just like home-brewed cryptography and security 
systems. Properly designing a Captcha requires consider-
able skill, and even experienced designers make mistakes. 
The devil is in the details. Any scheme should be carefully 
crafted and implemented by highly qualified people, and 
publicly and independently vetted before deployment.

Our experience suggests that Captchas will evolve in 
a process similar to cryptography, digital watermarking, 
and the like, with successful attacks leading to the develop-
ment of more robust systems. Security engineers will play 
a major role in this process. 
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