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ABSTRACT 
We motivate a new line of image forensics, and propose a novel 
approach to photographer identification, a rarely explored 
authorship attribution problem. A preliminary proof-of-concept 
study shows the feasibility of our method. Our contribution is a 
forensic method for photographer de-anonymisation, and the 
method also imposes a novel privacy threat. 
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1 INTRODUCTION 
We consider such a research problem: given a single photo, how 
to determine who was the cameraman? This is in general a hard 
problem, except for selfies and except if the photographer’s 
shadow became visible in the photo or her image was captured 
by a reflective object in the photo, such as a subject’s eyes.  

This problem is interesting to intelligence agencies. For example, 
a photo of a secret military facility in Russia can be valuable to the 
Central Intelligence Agency of USA. However, when the photo gets 
leaked by a mole inside the CIA, Russia’s anti-spy operatives would 
be keen to work out who took the photo in the first place.  

The problem is interesting to law enforcement agencies, too. For 
example, when the Scotland Yard are tipped off by a photo from an 
anonymous source that offers clues to a criminal investigation, it is 
likely to gain further information to accelerate their investigation by 
identifying the person behind the camera. 

Moreover, the problem is also interesting to privacy researchers. 
The answer to the research question will likely provide novel 
methods of privacy intrusion by de-anonymising a photographer of 
any concerned photo on the Internet, and motivate novel research 
for protecting photographers’ anonymity.  

Not all photographers care that it is public knowledge that some 
photos are taken by them. But in some circumstances, some 
photographers would care if some photos are linked to them as the 
people behind the camera.  

From the forensic perspective, a technique that does not identify 
the photographer 100% of the time can still be practically useful, 

since it will narrow down suspects to a small number. 
Complemented with other means such as surveillance, it is highly 
likely for intelligence agencies or law enforcements to pin down the 
concerned photographer accurately.  

We first review related work, and show that existing approaches 
do not resolve the research question we are asking. Then, we 
propose a new approach, and demonstrate its feasibility by a proof-
of-concept but realistic simulation study. Our method is applicable 
to both digital and film photography, in theory. 

2 RELATED WORK 
Visual stylometry. Artists like Claude Monet and Vincent van 

Gogh demonstrate distinctive styles in their paintings. In the past 
hundreds of years, people relied on stylistic analysis to tell apart 
genuine fine art from fakes. It became an emerging research area in 
recent years to apply signal processing and machine learning 
methods to analyse painting images for artist identification [1, 2]. 

Similarly, some photographers display peculiar styles in the 
photos they produce. For example, widely regarded as one of the 
best portrait photographers of all time, Yousuf Karsh is known for 
distinctive features in his portraits due to lighting, composition and 
posture. Ernst Haas showed a distinctive personal style in his 
impressionist colour photography, too. Therefore, it is a natural 
extension to develop photographer identification methods from 
painting artist identification.  

However, a training set of photos a priori, usually of a large size, 
is needed for each concerned photographer to make machine 
learning methods to work. This approach will hardly work if the 
given photo is the only available one taken by a suspect 
photographer, since it is impossible to collect a training set of photos 
for the photographer. On the other hand, if a photographer’s style is 
not sufficiently sophisticated, it is easy for somebody else to emulate. 
This can be exploited to fool machine learning algorithms, and to 
frame a photographer.  

Camera fingerprint [3,4]. CCD or CMOS imaging sensors are a 
digital camera’s heart. Due to sensor design and imperfections of the 
sensor manufacturing process, systematic artefacts (usually known 
as sensor pattern noises) form an equivalent of a digital fingerprint 
that can identify a camera. Such fingerprints are intrinsically 
embedded in each image and video clip created by a digital camera. 
Forensic applications of camera fingerprints include 1) source 
camera identification (which camera was used to produce this 
image?), and 2) device linking (were two images produced by the 
same camera?).  

Camera fingerprint, in theory, can link a photo to a specific 
camera, if a reference fingerprint can be established for the camera, 
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e.g. when the camera is physically accessible, or a set of photos 
taken by the same camera is otherwise available. However, camera 
fingerprint does not link a photo to a specific user of the camera. 
This is an issue when the same camera has been used by many 
people. Moreover, camera fingerprint can be easily removed from 
each photo, entirely disabling its forensic applications. The camera 
fingerprint technique has been developed for digital cameras, and it 
does not work for traditional film photography.  

Image metadata has a limited forensic application. For 
example, it can link a digital image to a camera model at most, not to 
a specific camera, let alone a photographer. On the other hand, film 
photography does not produce any such metadata.  

All the methods discussed above do not really provide a solution 
to our research question.  

3 A NOVEL METHOD 
When a scene is photographed, a photographer’s body often 

deflects light (via reflection and refraction) into the scene, leaving an 
impact on a photo created thereafter. Our hypothesis is that light 
rays deflected by a photographer into the photo that she is taking 
will give away some physical characteristics of herself.   

We refine our research problem as follows. Photo P1 was taken 
of a scene by a photographer at will, i.e. its acquisition is non-
controlled; our task is to work out who took the photo. We have 
access to the same physical scene, and we take a photo P2 similar to 
P1, while all acquisition parameters are reproduced in a controlled 
manner to be the same as used for producing P1, except that the 
photographer is absent. Our research questions are: 1). What 
differences in P1 and P2 can be exploited to deduce the 
photographer's physical characteristics? 2). Under what conditions 
the above measurement will work for the purpose? 

We choose to answer these questions via a realistic simulation, 
rather than an empirical lab study, since the latter involves with 
experiments that are more expensive and sophisticated to set up. 
Specifically, we use photon mapping, a well-established ray tracing 
technique, to conduct a proof-of-concept feasibility study. Photon 
mapping realistically simulates the interaction of light with different 
objects. In this approach, light rays from a light source and rays 
from a camera are traced independently until some termination 
criterion is met. Then, they are connected in a second step to 
produce a radiance value.  

3.1 Experimental Design 
We use the popular POVRay software1 for scene definition and 

rendering, as well as photon mapping. 

3.1.1 Scene Definition. Fig. 1 illustrates the scene that we use for 
this study, as viewed from the camera. The ground consists of a 
brown surface of unit-normalized RGB colour (0.80, 0.55, 0.35). The 
camera capturing the scene is placed 1.5m above the ground, and 2m 
away from a dark wall that is modelled as a non-reflective 
rectangular object of 1m width and 1.9m height. This wall casts a 
shadow on the floor, because of a light source 3m high and 1m 
                                                                 
1 http://www.povray.org 

behind the wall. The camera’s angle of view is 90°, which many 
lenses can achieve in photography, and the camera is oriented 
towards the corner formed by the floor and the wall. 

The ground and wall surfaces are flat and modelled with 
ambient-light and diffuse-light coefficients of 0.1 and 0.9, 
respectively. The resolution of the rendered scene is 1600x900 pixels. 
The bit depth is 16 bits per colour channel, in RGB format; this 
allows minimizing numerical errors.  

The photos P1 and P2 are acquisitions of the underlying 3D scene 
described above, from the point of view of the camera, taken with 
and without the presence of the photographer, respectively. 
Accordingly, every picture is a rendered version of the scene 
computed through the POVRay software. 

 
Fig. 1: Scene as viewed from the camera, without the presence of 

the photographer, as defined in Sect. 3.1.1. The wall (black) and its 
shadow on the floor (brown) are visible in the picture.  

3.1.2 Photographer. When present, the photographer faces the 
wall in the scene and stands together with the camera. The 
photographer’s jacket is modelled as a reflective rectangular object 
whose width and height are free parameters. The jacket exhibits 
surface irregularities in form of bumps, whose characteristic widths 
parallel to the surface is 30cm, and whose depth normal to the 
surface is left as a free parameter, as for the case of the jacket colour. 
Accordingly, the jacket material reflects light from the light source 
onto the floor of the scene. 

The jacket-surface bumps are modelled by the so-called bump-
mapping technique with a smooth-random-noise function. This 
approach allows simulating accurate surface properties without 
increasing the complexity of the underlying surface geometry. The 
light reflections from the body surface onto the floor and the wall 
are simulated using photon mapping with a count of 20x106 
photons, a figure that is empirically determined to be sufficient to 
converge to a high-quality scene rendering. Photon mapping is 
essential to model the effect of reflected light from the complex 
jacket surface onto the rest of the scene (especially the floor) by 
simulating trajectories of individual photons emitted from the light 
source and infer their distribution accordingly. 

Based on the pair of photographs P1 and P2, the parameters that 
are estimated with our method are the (a) height, (b) width, and (c) 
colour of the photographer’s jacket, where the jacket dimensions are 
assumed to match the photographer’s dimensions, and (d) the 
presence of bumps of distinct depths on the jacket surface. A non-
flat surface typically exhibits bumps, whose size and depth normal 
to the surface may vary; a zero depth is equivalent to a flat surface. 
In conjunction with colour, the presence and dimensions of bumps 
characterize the type or class of material used. Indeed, fibres 



 

composed of different fabrics are expected to modulate light-
reflection properties differently through their surface irregularities. 
The observed light-brightness distribution on the photo P1 used for 
estimation is thus expected to vary accordingly, which can be used 
for estimation.  

Each of the parameters (a)-(d) is varied within a certain range 
and compared to corresponding estimates, using 8 data points in 
total, and using preassigned default values for the other parameters. 
The jacket width ranges from 0.5m to 1.5m. The jacket height ranges 
from 1m to 2m. The depth of bumps normal to the jacket surface 
ranges from 0 to 20cm. Following the RGB convention, the jacket 
colour ranges from 0 to 1 for the G channel, the other colour 
channels being left to their default values. 

In our study, each parameter of interest is varied and estimated 
independently while other parameters stay constant at their default 
values. This allows inferring preliminary yet indicative proof-of-
principle results where confounding factors are minimized. 

3.1.3 Noise levels. For every parameter and estimations we work 
on, we consider several simulated noise levels in rendered scenes, 
both with and without the photographer, corresponding to various 
signal-to-noise ratio (SNR) levels (defined as the ratio between the 
energies of the signal and of the noise) for the photographs in 
decibels (dB). Specifically, we consider cases with 25, 30, 35, 40, 45, 
50, and +∞ dB. The noiseless case corresponds to a perfect 
replication of photo acquisition conditions, including the camera 
being the same model. Other noise levels help to lessen our tight 
control, by allowing for example a camera different from the one 
used by the original photographer, and by accounting for the 
presence of sensor noise. 

3.3 Results and Discussions 
Due to space limits, we only present selected results but omit 

details of our estimation methods. Figs. 2-3 show that the 
photographer’s width and height can be estimated based on the 
rendered scene (estimates in pixels, according to the resolution of 
the rendered scenes), even though the relationship is not linear. In 
particular, the increase in the estimated values is monotonic with 
respect to the original scene-parameter values for these geometric 
features, which allows for further calibration. The estimation starts 
to break down below a certain SNR level due to noise.  

Finally, Fig. 4 shows that the estimated bump depth value 
(determined using normalized gradients on the rendered scenes) 
increases with the corresponding scene parameter. Noise also affects 
the estimation results because it increases the perceived surface 
irregularity viewed from the rendered scene, even though Gaussian 
filtering was used to mitigate the effect. From a forensic perspective, 
the bump-depth estimate could provide information on fabric 
materials of the clothes the photographer was wearing. While it may 
be hard to pinpoint exact materials, our method could potentially 
classify them into several categories.  
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Fig. 2: Estimated vs. reference width (0.5~1.5m range) 

 
Fig. 3: Estimated vs. reference height (1~2m range) 

 

 
Fig. 4: Estimated vs. reference bump depth (0~20cm range) 


