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ABSTRACT 
We propose a novel concept and a model of image point 
memorability (IPM) for analyzing click-based graphical passwords 
that have been studied extensively in both the security and HCI 
communities. In our model, each point in an image is associated 
with a numeric index that indicates the point’s memorability level. 
This index can be approximated either by automatic computer 
vision algorithms or via human assistance. Using our model, we 
can rank-order image points by their relative memorability with a 
decent accuracy. We show that the IPM model has both defensive 
and offensive applications. On the one hand, we apply the model to 
generate high-quality graphical honeywords. This is the first work 
on honeywords for graphical passwords, whereas all previous 
methods are only for generating text honeywords and thus 
inapplicable. On the other hand, we use the IPM model to develop 
the first successful dictionary attacks on Persuasive Cued Click 
Points (PCCP), which is the state-of-the-art click-based graphical 
password scheme and robust to all prior dictionary attacks. We 
show that the probability distribution of PCCP passwords is 
seriously biased when it is examined with the lens of the IPM 
model. Although PCCP was designed to generate random 
passwords, its effective password space as we measured can be as 
small as 30.58 bits, which is substantially weaker than its 
theoretical and commonly believed strength (43 bits). The IPM 
model is applicable to all click-based graphical password schemes, 
and our analyses can be extended to other graphical passwords as 
well. 

Categories and Subject Descriptors 

K.6.5 [Management of Computing and Information Systems]: 
Security and Protection – Authentication, unauthorized access. 
K.4.4 [Computers and Society]: Electronic Commerce – 
Security. 

General Terms 

Security, Experimentation. 

Keywords 

Authentication, graphical honeywords, dictionary attacks, image 
point memorability. 

 

1. INTRODUCTION 
A major development in computer security in the past decade is the 
emergence of “usable security”, which has now become a thriving 
and fast-moving discipline. Most, if not all, people agree that we 
need security systems that are both secure and usable.  

A hot research topic in usable security is graphical passwords, 
which aim to deliver a graphical alternative to ubiquitous text 
passwords that have long suffered from various security and 
usability problems. Graphical passwords have been extensively 
studied in both the security and HCI communities, and have seen 
increasing deployments in the real world. For example, Microsoft 
Windows 8 has adopted a variant of the BDAS graphical password 
scheme [1]. Android's unlocking pattern scheme is also a graphical 
password system. 

A major inspiration for graphical password research is the well-
known fact that people perform far better when remembering 
pictures rather than words. As the saying goes, a picture is worth a 
thousand words. This picture superiority effect has been studied for 
decades by cognitive scientists and psychologists [2,3]. However, 
these studies have mainly focused on the memorability of pictures 
or images as a whole.  

A notable exception is an MIT team’s pioneering work published 
in 2012 [26]. They introduced the notion of “memorability of image 
regions”, and studied which regions of an image are memorable or 
forgettable, with the purpose of using individual regions to 
predicate the whole image’s memorability. 

In this paper, we study memorability of image points, in the aim of 
making breakthrough in security analyses of click-based graphical 
passwords, in which a password is a sequence of points, referred to 
as click-points, on one or more images. Such graphical passwords 
include a family of schemes, and have been studied the most 
extensively. We propose a novel model to capture and describe the 
memorability of each clickable point in an image. In our definition, 
a point is the smallest measure of an image. It has no internal 
structure. In contrast, a region, as studied in [26], is a portion of an 
image that has internal structures and comprises many image 
points. Additionally, a spot is a very small portion of an image that 
comprises points considered equivalent in click-based graphical 
passwords. For example, points within a tolerance distance to a 
click-point are acceptably equivalent to the click-point in verifying 
a password. These points form a spot. In this paper, when the 
context makes it clear, we may use a point to refer to the spot 
comprising its equivalent points, and reversely use a point’s spot to 
refer to the point. 

Our work was inspired by fine prior work [12-18], which shows 
that image points are not selected with equal chances: people prefer 
some points to others in creating passwords. An implied 
interpretation is that people associate different memorability levels 
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to different points. However, we go several steps forward from the 
state of the art. Our main contributions are as follows. 

For the first time, we formulate the concept of image point 
memorability (Section 3). We model the determination of a point's 
memorability as a noisy process in human memory where both 
memorable and forgettable aspects (i.e. both memory retention and 
memory decay) matter. Accordingly, for the first time, we have 
developed a heuristic model to accommodate numerical methods 
for describing, measuring, and comparing memorability levels of 
image points. 

As another novel contribution, we have developed two methods for 
implementing and utilizing the IPM model. One combines 
automatic algorithms with human efforts, and is called human-

assisted memorability (Section 4). The other is a computational 
approximation using automatic computer vision algorithms, and is 
called automated memorability (Section 5). While some of our 
vision algorithms are similar to those in [13,16-18], we have 
developed new algorithms by incorporating available vision 
techniques to either improve those used in the prior art or realize 
new functionalities unavailable. This computational realization of 
our IMP model is not straightforward, but requires significant, 
novel and creative efforts.  

We will show for the first time that our IPM model has both 
defensive and offensive applications in security.  

On the defensive side, the IMP model can be used to generate high-
quality honeywords for any click-based graphical password 
schemes (Section 6). Honeywords (false passwords) were 
introduced at ACM CCS’13 by Juels and Rivest [20] for detecting 
password compromise, but they only introduced methods for 
generating honeywords for text passwords. How to generate 
honeywords for graphical passwords remains an open question. In 
this paper, we will offer the first methodology and the first 
experimental study of honeyword generation for graphical 
passwords. We will also offer a set of criteria for judging 
honeyword quality, and show that honeywords generated with our 
methods are of a high quality. 

On the offensive side, the IPM model offers a new approach to 
mounting effective dictionary attacks on click-based graphical 
passwords (Section 7). We develop the first successful dictionary 
attacks on Persuasive Cued Click Points (PCCP) [7,8], which is the 
state-of-the-art click-based scheme and robust to all prior 
dictionary attacks. We show for the first time that, when examined 
with the lens of our IPM model, the probability distribution of 
PCCP passwords is seriously biased. Although PCCP was designed 
to generate random passwords, its security is substantially weaker 
than previous common beliefs.  

Our contributions also include discussions of practical relevance of 
our attacks, and measures that we recommend for improving the 
practical security of PCCP.  

2. RELATED WORK 

2.1 Click-based Graphical Passwords 
2.1.1 Representative Schemes 
While the first envisaged graphical password scheme [22] is click-
based, the most extensively studied click-based graphical password 
scheme is PassPoints [9,10], wherein a user selects a sequence of � 
click-points anywhere on an image in creating a password, and re-
clicks the same sequence of click-points within a preset tolerance 
range in authentication. Previous studies [9-11] suggested that � =
5  results in a good balance of security and usability. This 

configuration has thus been widely adopted in studying click-based 
graphical passwords.  

As described later, PassPoints is vulnerable to attacks exploiting 
image hotspots [12,13] and click patterns [14]. To address these 
vulnerabilities, Cued Click Points (CCP) [19] extends PassPoints 
by using multiple images, one click-point per image, for a 
password, and the next image is determined by a deterministic 
function of the current image, the clicked tolerance square, and the 
user ID. Persuasive Cued Click Points (PCCP) [7,8] extends CCP 
by requiring a user to select a click-point within a randomly 
positioned viewport in creating a password. A “shuffle” button is 
provided for users to randomly reposition the viewport until a click-
point is selected. 

2.1.2 Dictionary Attacks 
Security of click-based graphical passwords has been extensively 
studied. Golofit [12] examined the relationship between user-
created PassPoints passwords and the features of images used, and 
found that users tended to avoid flat regions, irregular structures, 
and periodic regular structures in selecting click-points. Dirik et al. 
[13] also found that the click-points of user-created PassPoints 
passwords tend to concentrate at certain spots, i.e., image hotspots. 
Chiasson et al. [14] found that there exist distinct common patterns 
among click-points of a PassPoints password, i.e., click patterns.  

Hotspots and click patterns have been exploited to mount 
successful dictionary attacks on PassPoints. For example, Dirik et 
al. [13] proposed an attack on PassPoints. Assuming that people 
tend to choose as click-points the centroids that draw natural visual 
attention in creating passwords, this attack uses a visual attention 
model to predict the likelihood of a centroid to be a click-point. It 
has achieved a success rate of 8.45% on a representative image 

using a dictionary of about 31 bits (i.e., 2�� entries), whereas the 
theoretical password space was 40 bits [13].  

Automated dictionary attacks on PassPoints were also proposed in 
[16,17], while the most comprehensive and sophisticated 
automated dictionary attacks on PassPoints were reported in [18]. 
In these attacks, both corners and centroids are detected as 
candidates of click-points. Heuristic click patterns and salient 
regions detected with a visual attention model are then used to 
select likely combinations of click-point candidates in building 
attack dictionaries. On two representative images with a theoretical 
password space of 43 bits, van Oorschot et al. [18] achieved a 
success rate of 7-16% using dictionaries of approximately 26 bits 
built with a simple pattern combined with the visual attention 
model, and a success rate of 48-54%, the highest success rate ever 
reported, using dictionaries approximately 35 bits built with image-
independent patterns.  

Human-seeded attacks on PassPoints were reported in [15,16]. In 
these attacks, click-points from a small set of users were harvested 
for targeted images, and attack dictionaries are constructed using 
either a first-order Markov model or an independent probability 
model. On two representative images with a theoretical password 
space of 43 bits, the human-seeded attacks achieved a success rate 
of 20-36% using dictionaries of 31 to 33 bits built with the 
independent probability model, and a success rate of 4-10% within 
100 guesses using the first-order Markov model – the most efficient 
dictionary attack ever reported.  

Chiasson et al. [14] examined hotspots and click patterns for 
PassPoints, CCP, and PCCP. The study concludes that PassPoints 
passwords contain both hotspots and click patterns, CCP passwords 
contain hotspots but no click patterns, and PCCP passwords contain 
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neither hotspots nor click patterns. A later study [8] reexamined the 
data collected in [14] and in other studies, including two PCCP 
studies wherein the PCCP passwords were created with much more 
shuffles than those in [14]. According to [8], the click-points of the 
PCCP passwords examined in [14] approach complete spatial 
randomness, whereas the click-points of all the PCCP passwords 
from the aforementioned three studies deviate from complete 
randomness. This is reasonable since more shuffles lead to less 
randomly distributed click-points. Using the click-point 
distribution of all the PCCP passwords, they estimated that a 33-bit 
dictionary had a mere 3% chance in successfully guessing a PCCP 
password in the set that traverses all possible combinations of the 
collected click-points [8]. It would be much more difficult to 
successfully guess an actual PCCP password since the actual PCCP 
passwords collected in those studies took only a tiny portion of the 
set. Therefore, harvesting click-points cannot attack PCCP. 
Harvesting real passwords directly cannot attack PCCP either, 
since PCCP passwords are user-dependent: with a high probability, 
each user gets a different sequence of images for her password. 
Therefore, PCCP is robust to human-seeded attacks that harvest 
either passwords or click-points.  

An image typically has a large number of corners and centroids. 
Permuting all of them to form password candidates would lead to a 
huge dictionary that is ineffective for dictionary attacks. For 
PassPoints, this issue is resolved by applying click patterns and 
salience to select only combinations that are likely to be a password 
in building attack dictionaries. For PCCP, there is no pattern or 
correlation among click-points in a password at all. This leaves 
salience as the only means to reduce the number of candidates. Our 
study (see Section 7.5.1) suggests that the salience calculated with 
the state-of-the-art visual attention model does not predict click-
points of PCCP passwords well. Therefore, prior automated attacks 
cannot build effective dictionaries to mount successful attacks on 
PCCP.  

To summarize, PCCP is robust to all prior dictionary attacks. Such 
strength of PCCP is expected since it was designed to resist these 
attacks in the first place.  

A click-point cannot be re-clicked exactly. Any click within a 
certain range of the click-point should be accepted as the click-
point. This tolerable range is fine in verifying an input password if 
the original password is stored, but makes such verification 
impossible if only the hash value of a password is stored since 
different clicks result in different hash values. Password 
discretization [30,31] is designed to solve this problem. Our recent 
paper [25] found that representative discretization schemes leak 
significant password information. In the current paper, we do not 
exploit the weakness of password discretization at all.  

The representative results of all prior attacks on click-based 
graphical passwords are summarized in Appendix.    

2.2 Other Graphical Passwords 
The graphical password schemes used in Windows 8 and Android 
belong to a different type that traces back to Draw-A-Secret (DAS) 
[21] wherein a user draws a password on a 2D grid, with the 
sequence of grid cells along the drawing path used as a password. 
Pass-Go [4] encodes grid intersection points rather than grid cells. 
A similar scheme is used in Android to unlock phones, which was 
recently attacked [6]. Background Draw-A-Secret (BDAS) [1] adds 
a background image to DAS to provide cue for re-drawing a 
password. The Windows 8’s variant allows users to draw a 
combination of lines, circles, and taps on an image as a password. 
This scheme was also attacked recently [5]. 

More information on graphical passwords can be found in good 
survey papers [23,24]. 

3. MEMORABILITY OF IMAGE POINTS  

3.1 Our Approach 
Understanding the memorability of images as a whole or of 
individual image regions is relevant to the research of graphical 
passwords in general, but cannot contribute much to security 
analysis of click-based graphical passwords. We envisage that if 
each point on an image can be measured and compared in terms of 
memorability, this new approach will be at the right granularity for, 
and significantly contribute to, analyzing such graphical 
passwords. 

The discovery of hotspots [12,13] and click patterns [14] suggests 
that click-points tend to be memorable points. Human-seeded and 
automatic methods [13,15-18] were explored to predict click-points 
in PassPoints with a good success. However, these fine prior art did 
not bring out the concept of building a model of image point 
memorability. Neither did they consider two important aspects of 
memorability, namely human memory decay and image content 
semantics. 

Golofit [12] suggested that, when creating PassPoints passwords, 
users tended to avoid the three types of image regions shown in 
Figure 1. Our interpretation is simply that these regions do not have 
semantic concepts that are strong enough to resist human memory 
decay, and thus they are unmemorable and avoided by the users. 
The prior art [13,16-18] nicely ignores regions like Figure 1(A), but 
fails to realize that corners and centroids in Figures 1(B) and 1(C) 
are not memorable, for the exact reason that their methodology does 
not take into consideration both content semantics and memory 
decay. 

Based on these prior art, we formulate the notion of image point 
memorability. Similar to [26], we consider both memorable and 
forgettable aspects, and model the memorability of an image point 
as a noisy memory process of mentally specifying the point on the 
image, and registering the information with human memory. In this 
process, at least two main factors matter, namely, the complexity 
of mentally specifying the point, which determines the memory 
burden for a user, and the point’s distinctiveness in its 
surroundings, which reflects its robustness to memory decay. These 
are the main features differentiate our approach from all the prior 
art, methodologically.  

A B C

Figure 1: Three types of regions that users tend to avoid in 

creating PassPoints passwords (taken from [12]). 

3.2 A Heuristic IPM Model 
We first define that an object is an identifiable portion of an image 
that can be interpreted semantically as a single unit. An object is 
typically an image region, but can degenerate into a point when the 
object is sufficiently small. 

In our IPM model, the notions of both ‘point’ and ‘object’ are 
essential. As a key construct in our model, we assume that, when 
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people mentally specify an image point, this specification is in 
reference to an object. Three other key notions in our model – two 
for capturing memorable aspects of memorability, and the third for 
forgettable aspects – are as follows.  

Semantics is important for image memorability [2,3] and relevant 
to both image points and objects. We use it to classify objects or 
points into three types:  

• An object or point is of high semantic coherence (HSC), if it 
represents a clear and unitary semantic concept, such as 
“dog” and “tree” for objects, and “center” and “corner” for 
points. 

• An object or point is of medium semantic coherence (MSC), 
if it is not a clear and unitary concept but is still semantically 
meaningful. Such an object or point has a clear “meaning” 
but is not as easily pinpointed as above. Instead, it can be 
pinpointed via a concise description, such as “edge of pool”. 

• An object or point is of low semantic coherence (LSC), if it 
cannot be classified into either type above. 

Salience refers to the state or quality of an object that stands out 
perceptually from its neighbors. A salient object naturally draws 
viewers’ attention, but a non-salient object does not. Therefore, it 
is less complex to mentally specify a salient object than a non-
salient one. In our model, the notion of salience is applicable only 
to image objects, but not to image points.  

Distinguishability is a notion that is defined for both objects and 
points. We use it to classify a point or object into three types: 
undetectable, detectable, and distinguishable. A point or object is 
detectable if it can be visually identified on an image; otherwise 
undetectable. A detectable point or object is distinguishable if it is 
easily distinguished from the surrounding context. A detectable 
point may be indistinguishable. For example, a cross-point or a 
rectangle’s center in Figure 1(C) is detectable but not 
distinguishable since it is hard for humans to mentally distinguish 
the point from surrounding similar points. To be robust to memory 
decay, a memorable point or object should be distinguishable. An 
indistinguishable point or object is unmemorable. Note that the 
term “distinguishable” carries a different meaning in [17,18], where 
distinguishable points are actually detectable points we refer to in 
this paper.  

In a nutshell, our IMP model can be explained with the above 
notions as follows. The complexity of mentally specifying a point 
is measured with the point’s and its reference object’s semantics 
levels, and together with the reference object’s salience level. A 
point’s robustness to memory decay is measured by the 
distinguishability levels of both the point and its reference object. 
Intuitively, a typical memorable point is of HSC, related to a salient 
HSC reference object, and distinguishable from its surrounding 
neighbors.  

We then develop a heuristic categorical system, which is so 
designed that will accommodate both automated and human-
assisted realizations of our IMP model.  

Indistinguishable points are unmemorable, and thus collectively 
treated as a single category in our model. On the other hand, by 
semantics, there are three types of distinguishable points: HSC, 
MSC and LSC. For these points, we have 2 × 3  = 6 types of 
reference objects, considering both salience and semantics. As a 
point is specified in reference to an object, this gives 3 × 6 = 18 
possible combinations of distinguishable points and objects. For the 
sake of simplicity, we group them into 7 main categories, as 
explained below.  

Image Point Memorability (IPM) Model:  

• We introduce M-index to measure a point’s relative 

memorability reversely: a lower M-index value indicates 

better memorability.  

• We assign an M-index of infinity to indistinguishable points, 

due to their poor memorability.   

• A distinguishable point carries a weight describing its 

semantic coherence level, which is 0 (High), 1 (Medium) or 2 

(Low); so does its reference object. In addition to a semantics 

weight, the object also carries a weight describing its salience 

level, which is either 0 (salient) or 2 (non-salient).  

• A distinguishable point’s M-index is the sum of its semantics 

weight and its reference object’s semantics weight and 

salience weight.  

• Heuristically, distinguishable image points and their relative 

memorability are classified into the following 7 categories 

according to their M-indices:  

M-Index Description 

0 HSC points of salient HSC objects. 

1 
MSC points of salient HSC objects, HSC points of 
salient MSC objects. 

… … 

6 LSC points of non-salient LSC objects.  

4. HUMAN-ASSISTED MEMORABILITY 
The IPM model can be semi-automatically approximated by 
finding detectable points with computer vision algorithms and 
labelling detectable points by humans. This leads to our human-
assisted memorability. We first describe a version independent of 
point locations, which fits PCCP-type graphical password schemes 
wherein the chance that a point is chosen as a click-point is 
independent of the point’s location due to the randomly positioned 
viewport. Then we revise it to incorporate a point’s location.  

4.1 Detectable Points 
Detectable points should be distinct structural points or points 
located in reference to distinct structural entity. Like [16-18], we 
approximate distinct structural points with corners and points 
located in reference to others with centroids. A corner is the 
intersection of two edges, and a centroid is the center of an object 
or its segment. However, the corner detection used in [16-18] tends 
to detect excessive corners, such as weak corners of small and 
irregular structures, which people unlikely select as click-points.  

We address this problem by detecting as distinct structural points 
both weakly distinctive corners of large structures (i.e., long edges) 
and strongly distinctive corners. Our centroid detection is similar 
to [18]. The details of our corner and centroid detection algorithms 
are available in our recent paper [25]. Detected corners and 
centroids form a set of detectable points for an image, as shown in 
Figure 2 with a representative image. By excluding those points that 
are unlikely click-points, we produce a smaller yet more accurate 
set of detectable points than the prior art did. 
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Figure 2: Detectable points. 

4.2 Location-Independent Human-Assisted 

Memorability 
To facilitate labeling detectable points, we have implemented a tool 
to display detectable points on an image, with different categories 
marked with different colors. Detectable points are all initially 
assigned with M-index = 6. A user can move or adjust a circle to 
select detectable points inside the circle to label or adjust their M-
indices according to the IPM model. We add a new category called 
textual points for detectable points that are a part of texture. A 
texture is a region comprising similar and repetitive structures, 
possibly with a certain degree of randomness. Both cross-points 
and rectangle’s centers shown in Figure 1(C) are textual points. 
Textural points are unmemorable and thus removed.  

Salient objects are first identified as follows: looking at the image 
far away such that image details are lost; objects that are still 
identifiable are considered as salient objects. Once salient objects 
are identified, the M-index of a point on a salient object is then 
reduced by 2, the weight for a salient object. Then HSC and MSC 
objects are identified. The M-index of a point on an identified 
object is reduced by the weight of the object, i.e., 2 or 1 for a HSC 
or MSC object. Finally, HSC and MSC points are identified, and 
their M-indices are reduced in a similar manner. The tool also 
allows a user to assign a point’s M-index directly. Unfinished work 
can be saved and then resumed at a later time. Pressing “Submit” 
button ends labeling of an image. 

We collected 1200 images in our empirical study of PCCP security 
(see Section 7). Three computer science undergraduates were hired 
to label detectable points in these images. They had not used any 
click-based graphical password before, and were otherwise not 
involved in this work. They were trained with exemplary samples 
of each category in advance. The task of labeling the 1200 images 
was divided among the three people. Each image was labeled by 
one person. The work was done in 10 days. The average time to 
label an image was 3 minutes and 32 seconds. 

There was no cross-validation in this labeling process, which might 
result in some inconsistent or inaccurate labels. However, it turns 
out that the labelling quality we achieved was sufficient for our 
studies, as evidenced by experimental results we present later.  

4.3 Human-Assisted Memorability 
Salience is location-dependent: humans naturally look at objects 
near the center of an image [27]. This behavior is accounted for in 
[27] with a Gaussian blob centered at the image center, which is 
also applied to adjust human labelling results obtained in Section 
4.2. The following empirical rule is applied: human labeled M-
index is adjusted by subtracting the Gaussian blob normalized to an 
output range of [0, 1]. A detectable point at the image center is thus 

moved to the next category of lower M-index, while there is no 
change to the M-index of a detectable point at an image corner. The 
resulting M-index is shifted by adding 1 to ensure that M-index is 
non-negative.  

The final M-index may be a non-integer, and can be further 
converted into 7 scales of the IPM model. However, it turns out that 
what matters for all applications discussed in this paper is the 
relative ranking capability enabled by these numeric values, for 
which the M-index without conversion serves equally well. As a 
result, such conversion is ignored in this paper. 

5. AUTOMATED MEMORABILITY  
The IPM model can also be approximated with automatic computer 
vision algorithms, albeit much coarser than the human-assisted 
approach since object recognition and image understanding remain 
open questions. This leads to our automated memorability. We will 
first describe the automated memorability, and then modify it to 
make it independent of a point’s location. 

5.1 Automated Memorability 
The automated memorability comprises three modules. The first 
module, as described in Section 4.1, finds detectable points. For 
each detectable point, the second module applies the state-of-the-
art attention model proposed by Judd et al. [27] to compute a 
salience value from 0 to 255, which predicts how likely, with a 
larger value meaning more likely, people would fixate at its local 
region. 

The third module evaluates the point’s distinguishability via 
dissimilarity of its neighborhood. The more dissimilar, the higher 
distinguishability. Colors and gradients are complement attributes 
of an image region, with gradients pertinent to structural 
information. Both color dissimilarity and structural dissimilarity 
are used. They indicate how dissimilar the color distribution and 
the gradient distribution, respectively, of a point’s neighborhood.  

The automated memorability computes the M-index of a detectable 
point empirically as follows:  

M-index = �
���� ∙  � ���� ∙(255 – salience value),         (1) 

where “salience value” is calculated with the Judd et al.’s model, 

and �
���� and � ���� are step-wise factors determined respectively 

by the color dissimilarity and gradient dissimilarity of the point. We 
describe in detail the determination of color dissimilarity and �
���� 

in Appendix 11.2, and that of structural dissimilarity and � ���� in 

Appendix 11.3. 

From Eq. (1), a detectable point with a higher salience value gets a 

smaller M-index (i.e., more memorable). Factor �
���� (or � ����) 

is larger than 1 and thus boosts M-index (i.e., less memorable) if 
the point is in a less dissimilar region and thus less likely 
distinguishable from other points in its neighborhood. On the other 
hand, the factor is smaller than 1 and thus lowers M-index (i.e., 
more memorable) if the point is in a more dissimilar region and thus 
more likely distinguishable from other points in its neighborhood. 
For other types of local regions, its value is 1.  

M-index given by Eq. (1) can be further converted into 7 scales of 
the IPM model. As we mentioned in Section 4.3, what matters for 
all applications discussed in this paper is the relative ranking 
capability enabled by these numeric values, for which M-index 
given by Eq. (1) serves equally well. As a result, we have ignored 
the conversion in this paper.  
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5.2 Location-Independent Automated 

Memorability  
The automated memorability described above depends on a point’s 
location since salience is location-dependent. However, we can 
eliminate this dependence simply by removing the center feature, 
the only location-dependent feature in the Judd et al.’s model [27]. 
The resulting M-index is the sought one. 

5.3 Comparison with Prior Art 
Prior art [13,16-18] has conceptually used the first two modules, 
but is inadequate for predicting memorability of a point due to lack 
of memory decay mechanism fulfilled in the third module, as we 
mentioned in Section 3.1. This inadequacy also manifests in the 
following real example. Figure 3 shows an image and its salience 
map, wherein a more salient area is brighter. We can see that leaves 
have rather large salience values. As Figure 2 shows, many 
detectable points can be found in leaves. Their M-indices given by 
Eq. (1) without using any dissimilarity factor will be small, 
meaning these detectable points are determined memorable. 
Actually they are textural points and thus unmemorable. The prior 
art is significantly inaccurate in evaluating the memorability of 
points in textual regions.  

Figure 3: Image (left) and its salience map (right). 

In contrast, by incorporating color and structural dissimilarity 
factors into Eq. (1) to model the memory decay mechanism in our 
IPM model, an M-index derived by the attention model is 
significantly boosted (i.e., much less memorable) for a point in 
leaves due to very low dissimilarity for both color and gradient 
distributions in leaves. Even though detectable points are still found 
in leaves, they are ranked among least memorable points (i.e., with 
largest M-indices), and thus are likely excluded from our 
dictionaries, which is what we seek for.  

When a point’s neighborhood is very dissimilar, the dissimilarity 
factors in Eq. (1) also decrease its M-index returned by the attention 
model (meaning the point is more memorable). In this way, relative 
memorability levels of detectable points are reordered by both color 
and structural dissimilarities, resulting in better and more accurate 
dictionaries than before.  

In addition to our conceptual innovation of introducing a memory 
decay mechanism, we have developed a new corner detection 
algorithm that outperforms prior art, and have applied a better 
attention model than the one used in prior art. 

Our approach offers the first automatic approximation to the IPM 
model, and distances itself from prior art, both conceptually and 
technically. We note that this is not necessarily the optimal 
automatic approximation. We encourage computer vision 
researchers to search for better techniques. 

6. A DEFENSIVE APPLICATION: 

GRAPHICAL HONEYWORDS 
Honeywords were recently introduced to improve the security of 
hashed text passwords [20]. For each account, one or more 
honeywords (false passwords) are cryptographically hashed and 
stored together with the real password hash. A legitimate user never 
uses the honeywords associated with her account. An adversary 
steals a file of hashed passwords, and can invert the hash function. 
If the adversary cannot tell passwords and honeywords apart, he 
may use a honeyword in a login attempt, which will sets off an 
alarm of password compromises. Honeywords are also applicable 
to systems that do not store password hashes, but store encrypted 
or plain passwords instead.  

Graphical passwords are stored in a similar manner as text 
passwords. For click-based graphical passwords, a password 
breach may allow adversaries to access or deduce either a 
password’s click-points or their tolerance squares, depending on 
whether password discretization has been used or not, and on which 
discretization scheme has been used. In the latter case, a tolerance 
square, which is very small, reflects the characteristics of the points 
inside. Graphical honeywords would serve exactly the same 
purpose for graphical passwords as text honeywords for text 
passwords. 

The IPM model can be applied to generate honeywords for any 
click-based graphical password scheme. We chose PassPoints in 
our empirical study for two reasons:  

• It is more challenging to design a honeyword scheme for 
PassPoints than for either CCP or PCCP, since the former 
exhibits click patterns, which the latter lacks but that can be 
exploited by adversaries to tell passwords and honeywords 
apart.  

• To reach the same discriminative power, PassPoints requires 
a much smaller training set than CCP or PCCP does.  

Thus, PassPoints facilitates a good feasibility study of our approach 
without loss of generality. 

6.1 Honeywords: Desired Properties  
To be effective and practical, a honeyword generation system 
should have the following desired properties: 

1. Efficiency. Internet applications may have many accounts 
and thus need to generate a large number of honeywords 
efficiently.  

2. Indistinguishability. Honeywords should be 
indistinguishable from passwords to prevent adversaries 
from telling them apart. This indistinguishability manifests 
in several ways: 

a. Honeywords should have the same semantic 
characteristics as passwords. For PassPoints, this means 
that honeywords should have a tendency to use hotspots 
and exhibit click patterns that PassPoints passwords 
exhibit.  

b. Passwords may exhibit certain variations due to human 
imprecision. For example, a hotspot is likely chosen as a 
click-point for PassPoints, but different passwords may 
contain a slightly different point due to human click 
variations. For a system that click-points can be deduced 
in password breaches, honeywords should also exhibit 
the same variations.  

c. Statistically indistinguishable. Honeywords should 
exhibit a probability distribution indistinguishable from 
that of passwords to avoid being distinguished by 
statistical analysis. For example, PassPoints passwords 
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containing hotspots and click patterns are more likely 
chosen by users than other passwords. Honeywords 
should also exhibit this skewed probability distribution.  

Quality of generated honeywords can be evaluated by comparing 
with the ideal case that honeywords are truly indistinguishable from 
passwords. In this ideal case, the best one can do is a random guess, 
resulting in a success probability of 1/(� + 1), where �  is the 
number of honeywords per password. This probability can be made 
arbitrarily small by selecting �  appropriately but at the cost of 
complexity and storage space. Without loss of generality, � was set 
to 1 in our empirical studies.  

6.2 Generating Honeywords for PassPoints  
6.2.1 Overview  
In our honeyword generation, Property 2.a is achieved by utilizing 
the IPM model (Section 6.2.2) to select points and to rank-order 
honeyword candidates, referred to as words, and by adjusting the 
rank order with click patterns (Section 6.2.3) so that generated 
honeywords exhibit both hotspots and click patterns. To fulfill 
Property 2.c, each word is assigned a drawing probability 
according to which words are drawn (i.e., selected) in generating 
honeywords, and the drawing probability distribution is made 
similar to that of real passwords (Section 6.2.4) to avoid 
distinguishing honeywords and passwords statistically. We raise 
the challenge we face by requiring our honeyword generation to 
fulfill Property 2.b in order to be applicable regardless of password 
discretization methods. To achieve this, each drawn word is 
perturbed (Section 6.2.5) before outputting as a honeyword. 

Either the automated memorability or the human-assisted 
memorability can be used as an approximation of the IPM model 
for generating honeywords. Either resulting system can generate a 
large number of honeywords efficiently. Thus Property 1 is 
fulfilled. Note that human labeling is needed for the human-assisted 
memorability, but such labeling is a one-shot, manageable effort. 
For example, it took less than 7 minutes to label the two images 
shown in Figure 4 that were used in our case study. After labeling, 
a large number of honeywords can be generated automatically and 
efficiently. We also note that honeyword generation with the 
human-assisted memorability is significantly different from 
generating honeywords with humans. It is a substantially easier task 
for a user to rank clickable image points by their memorability 
levels than to create a large number of distinct passwords as 
honeywords. More importantly, manually creating many 
honeywords is exhausting for a user, which deviates from people’s 
normal password-creating behaviors. Honeywords created this way 
would highly likely have a distinct probability distribution from 
real passwords, resulting in honeywords distinguishable from 
passwords. 

6.2.2 Building a Dictionary with IPM Model 
Detectable points are found from an image, and their M-indices are 
calculated using the IPM model to form a set of distinguishable 
points. For a simple image, this set might be too small. In this case, 
indistinguishable points of low M-indices (i.e., more memorable) 
are added to the set so that the set is large enough in order to 
generate a large variation of honeywords. On the other hand, when 
a simple image is used, security-conscious users may be forced to 
choose less memorable points in creating their passwords in order 
to avoid hotspots. 

The points in the set are then traversed to form a dictionary of 
words; each word is a sequence of 5 distinct points with the 
minimum distance between any pair of points exceeding a 

threshold required by PassPoints. Like in attacking PCCP to be 
described in Section 7.1, each word is assigned an M-index that is 
the sum of the M-indices of its constituent points.  

6.2.3 Adjustment by Click Patterns 
Since PassPoints passwords exhibit click patterns, so should 
honeywords. Two heuristic click patterns are considered: Line and 
Regular. Line includes any sequence of 5 click-points that follow a 
directional line. Regular includes any sequence of 5 click-points 
that follow consistent directions such as left to right, clock-wise.  

Patterns are used to adjust M-indices of the words in the dictionary 
so that words exhibiting a pattern have a higher chance to be 
selected as honeywords, i.e., their M-indices are lowered. Like in 
Sections 5 and 6, this adjustment is achieved by multiplying a 
fractional factor for the automated memorability, and by 
subtracting a subtrahend for the human-assisted memorability. As 
described in detail in Appendix 11.4, this factor or subtrahend is a 
confidence level ranging from 0 to 1, which is an empirical metric 
to measure evaluation reliability that the word exhibits the pattern. 
For each word in the dictionary, Line is checked first. Regular is 
checked if the word does not exhibit the Line pattern. If an entry 
exhibits neither pattern, its M-index remains unchanged.  

6.2.4 Approximating Password Distribution 
The drawing probability assigned to each word should preserve the 
word order by their M-indices. In addition, the drawing probability 
distribution should be similar to the probability distribution of 
passwords so that honeywords cannot be distinguished statistically 
from passwords. Since no probability distribution of PassPoints 
passwords is available, we approximate it with the distribution of 
attacking PassPoints, shown in Figure 6 in Section 7.5: the drawing 
probability of a word with M-index � is calculated empirically as 
follows: 

�(�)  =  � ∙ exp (−" ∙ #$%&'
%�($%&'),        (2) 

where )*+ and ),- are the minimum and maximum M-index of 
the words in the dictionary, respectively, �  is a normalization 
factor, and " ≥ 0  is a parameter. Eq. (2) is a monotonically 
decreasing function of M-index, thus preserves the M-index order 
of words. 

To mitigate variations due to different images, parameter "  is 
determined by matching the ratio of two points on the curve near 
each end. The curve of the automated attacks on PassPoints shown 
in Figure 6 is used for the dictionary generated with the automated 
memorability, and that of the human-seeded attacks is used for the 
dictionary generated with the human-assisted memorability.  

6.2.5 Generating Honeywords 
When a honeyword is wanted, a word is drawn from the words in 
the dictionary according to their drawing probabilities. This can be 
realized by generating a random number with a uniform 
distribution from 0 to 1, and selecting the word that contains the 
random number in the cumulative probability. Each point in the 
selected word is then perturbed using the distribution of human 
click-variations given in [19] to fulfill Property 2.b. The result is 
output as a honeyword.  

6.3 Empirical Evaluations 
6.3.1 Experimental Setting 
We apply a simple yet powerful method to evaluate the quality of 
generated honeywords: using human brains in a standard learning 
test. In this method, experts learn from a training set of labelled 
passwords and honeywords. Then they are asked to identify each 
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password in a testing set disjoint with the training set in a blind test 
wherein the password and a honeyword are presented side by side 
randomly. The resulting success rate, which is the ratio of correctly 
identified passwords to total tested passwords, is then compared 
with the expected success rate of 50% of the ideal case that 
honeywords are indistinguishable from passwords.  

Figure 4. Two typical images in our experiments 

Birds and People, the two images shown in Figure 4, were chosen 
in our case study since they represent two typical types of images 
possibly used in PassPoints: Birds is simple without many 
memorable points, while People is complex with many memorable 
points. Both images were 400x600. The passwords collected in a 
prior study [13], with 92 passwords for Birds and 142 passwords 
for People, were used in our experiments. Both automated 
memorability and human-assisted memorability were used to 
generate honeywords in order to compare their performances.  

To facilitate quickly locating click-points in a password (or a 
honeyword) and viewing their surrounding contexts, three views 
were provided for a user to switch at will: the image overlaid with 
the password (i.e., the password’s click-points and their order were 
marked on the image), the password alone, and the image alone. 
There was no restriction on how passwords in the training set were 
learned or how long to make a decision in a test.  

Three experienced researchers in computer vision and pattern 
recognition who are familiar with graphical passwords acted as 
experts in our evaluation; otherwise they were not involved in this 
work. Before experiments, they were informed of the honeyword 
generation method. Their expertise enables them to understand our 
honeyword generation method inside out, and to know every clue 
and where and how to look for it in telling honeywords and 
passwords apart. Therefore they are the most capable adversaries in 
our setting.  

For each expert, we randomly partitioned the passwords into three 
sets for each image: a training set with 30 passwords for Birds and 
48 passwords for People, and two testing sets of equal size, one 
testing set for each realization of the IPM model. In the learning 
phase, we generated on the fly 100 honeywords per image per 
realization of the IPM model and labelled them with the realization 
method for each expert to learn. 

In the testing phase, one password was tested at a time. First, we 
randomly selected a test set, and randomly picked an untested 
password from the set. Then a honeyword was generated from the 
IPM model realization corresponding to the selected test set. The 
password and the honeyword were displayed side by side at a 
random order. When a decision was made in a test, the correct 
answer was displayed so that finished tests could be learned for 
subsequent tests. This was to mimic the process that an adversary 
could learn from each trial. Our procedure design also eliminates 
the advantage that more samples were learned for a later tested 
realization if the two realizations were tested sequentially, resulting 
in a fair comparison of the two realizations of the IPM model. 

At the end, each expert was asked to write down major 
discriminative features they had learned and employed in the tests. 

Eight months after, we conducted another experiment to test a 
baseline method, wherein a honeyword was generated by randomly 
selecting 5 image points that satisfied PassPoints’ requirements. By 
then, the three experts had already forgot all the passwords they 
saw before. This baseline experiment followed the same procedure 
as before, except that the results of the two test sets were averaged 
for each expert, since the honeywords used were all generated with 
the same baseline method. 

6.3.2 Experimental Results 
Table 1 shows the resulting success rates for each expert denoted 
as A, B, C as well as their averages. There is a significant difference 
for success rates between the baseline method and our methods. 
The baseline method’s honeywords were almost perfectly 
identified, while our method’s success rates are within a distance 
of 14.5% from the expected 50% success rate of the ideal case that 
honeywords are indistinguishable from passwords.  

We also examined temporal behaviors of success rates, and did not 
find any noticeable improvement of success rates for late tests.  

Table 1. Experimental results: success rates (%)  

% 
Birds People 

Auto Human Baseline Auto Human Baseline 

A 64.5 48.4 98.4 63.8 44.7 100 

B 58.1 51.6 96.8 61.7 48.9 98.9 

C 45.2 58.1 100 55.3 42.6 100 

Average 55.9 52.7 98.4 60.3 45.4 99.6 

6.3.3 Statistical Analysis  
Statistical analysis has been used to determine whether differences 
in data reflect actual differences or might reasonably have occurred 
by chance. A value of 0 < 0.05 is regarded as indicating statistical 
significance, implying less than 5% probability that results 
occurred by chance.  

First we applied the exact binomial test to individual experimental 
results to determine if the results reflected actual distinguishability 
between honeywords and passwords. The resulting 0-values are 
shown in Table 2 except the last row, where statistically significant 
results are marked in yellow. No expert could detect a statistically 
significant difference between passwords and honeywords 
generated with either of our methods, whereas every expert could 
detect a statistically significant difference between passwords and 
honeywords generated with the baseline method. 

Table 2. 3-values with the exact binomial test 

0-value 
Birds People 

Auto Human Baseline Auto Human Baseline 

A 0.150 1.000 1.54E-08 0.079 0.560 1.42E-14 

B 0.473 1.000 2.98E-08 0.144 1.000 3.48E-13 

C 0.720 0.473 9.31E-10 0.560 0.382 1.42E-14 

All 0.300 0.679 4.51E-25 0.018 0.312 5.13E-41 

Then we applied Fisher’s exact test of independence to the 
experimental results to determine if there was any statistically 
significant difference among the experts. The resulting 0-values for 
different images and methods are shown in Table 3. No statistically 
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significant difference is found among the experts. As a 
consequence, we pooled the three experts’ results together and 
redid the exact binomial test. The resulting 0-values are shown in 
the last row of Table 2. There is only one case that the statistical 
significance flips: now there is a statistically significant difference 
between passwords and honeywords generated with the automated 
memorability on image People. This can be explained by the fact 
that more samples lead to more power or higher sensitivity in the 
exact binomial test. Therefore the pooled data test could detect 
subtler difference that individual tests could not detect. 

Table 3. 3-values with Fisher’s exact test of independence 

 
Birds People 

Auto Human Baseline Auto Human Baseline 

0-value 0.344 0.811 0.774 0.747 0.869 1 

The automated memorability’s different distinguishability with 
these two images can be explained by one discriminative rule 
learned and employed by the experts: passwords tended to contain 
semantically meaningful and/or semantically correlated points. 
Lacking of semantics understanding, the automated memorability 
might generate honeywords semantically distinctive from 
passwords, which were likely identified with this discriminative 
rule.  

Semantically meaningful points tend to be hotspots, particularly for 
an image with a limited number of such points. Security-conscious 
users tend to avoid selecting any hotspots in their passwords, and 
thus their passwords are less likely to contain semantically 
meaningful points for a simple image (which has a small set of such 
points) than for a complex image (which has a large set of such 
points). On the other hand, a distinguishable point is more likely to 
be a hotspot for a simple image with a small set of distinguishable 
points than a complex image with a large set of distinguishable 
points. As a result, the discriminative rule tends to be less effective 
for image Birds than for image People, since the former contains 
much fewer semantically meaningful or distinguishable points than 
the latter. This explains the automated memorability’s different 
distinguishability for People and for Birds.  

The human-assisted memorability, on the other hand, captures 
semantics well, and thus the above discriminative rule is not 
effective for the human-assisted memorability. 

To sum up, our empirical study suggests that both realizations of 
the IPM model are substantially better than the baseline method. 
For both simple and complex images, honeywords generated with 
the baseline method are distinguishable from passwords, whereas 
those generated with the human-assisted memorability are not 
distinguishable from passwords. On the other hand, honeywords 
generated with the automated memorability are indistinguishable 
from passwords when a simple image is used, but distinguishable 
with a powerful and sensitive statistical test when a complex image 
is used. 

7. AN OFFENSIVE APPLICATION: 

DICTIONARY ATTACKS 
The IPM model can be applied to guess any click-based graphical 
passwords. We choose PCCP as our case study for two reasons: 

• As discussed in Section 2.1.2, PCCP is the most secure click-
based scheme, and thus the most challenging to attack.  

• PCCP is the best in testing efficacy and power of an IPM 
model since memorability is the only exploitable attribute in 

guessing PCCP passwords, and PCCP has the most random 
click-points and thus the widest coverage of test points.  

Like the security analysis of PCCP against offline attacks in [8], we 
assume that all server-side information is known. This means that 
attackers have access to all images, know the first image of a 
password and its each click-point’s grid of tolerance squares, and 
can determine the next image from a guessed click-point on a 
current image and verify if a guessed password is correct or not. 
This assumption allows us to focus on the guessability of PCCP 
passwords and their effective space, and to compare PCCP’s 
strength with other click-based passwords and with text passwords.  

7.1 Building Personalized Attack Dictionaries 
In PCCP, a next image is determined by a deterministic function of 
the user ID, the current image, and the clicked tolerance square. 
This results in different next images for different accounts even if 
the same point is clicked on an image. Therefore different accounts 
have different password spaces, but these password spaces have the 
same size. We need to build personalized dictionaries for each 
account in dictionary attacks on PCCP. This is very different from 
dictionary attacks on PassPoints, wherein a single attack dictionary 
is applicable for all accounts.  

A PCCP password comprises 5 click-points. A password guess, 
referred to as a word, should also comprise of 5 points. Each word 
is assigned an M-index to measure its relative memorability. Since 
click-points in a PCCP password are independent of each other, the 
M-index of a word is empirically the sum of the M-indices of its 
constituent points.  

For each account, a personalized dictionary is built recursively by 
guessing one click-point at a time. More specifically, we start by 
guessing the first click-point of the password. Distinguishable 
points of the first image are found and grouped into different 
tolerance squares. If there is more than one distinguishable point in 
a tolerance square, the one with the smallest M-index (i.e., most 
memorable) is kept while the others are deleted. Each survived 
distinguishable point is a guess of the first click-point. They form a 

dictionary 4� of words; each word contains one point. 

Then we guess the second click-point. For every word 5&
�  in 

dictionary 4� obtained above, 5&
� ∈ 4�, we get the next image for 

5&
� , find and process distinguishable points of the image as 

described for the first image. Each survived distinguishable point is 

a guess of the second click-point and added to 5&
�, resulting in a 

word containing 2 points, which is added to a new dictionary 47 

for the current stage. After processing all the words in 4� , we 

obtain a dictionary 47 of words; each word contains 2 points.  

The above process is repeated until all the five click-points have 

been guessed, resulting in a dictionary 48 . M-index is then 

calculated for each word in 48, and all the words in 48 are rank-
ordered from low to high M-index (i.e., the most memorable word 
first). The sorted dictionary, possibly truncated to a specific size, is 
the sought attack dictionary for the account. 

7.2 Experimental Setting  
PCCP was implemented for Web applications according to [7,19]. 
A total of 1200 images with a similar structural complexity as those 
used in [15-18] were collected from the Internet, including the two 
images used in [18]. They were cropped, if necessary, to 451 ×
331, the same size as in [15-18]. Hash function MD5 was used as 
the deterministic function to select the next image: the MD5 hash 
value was divided by 1200, the total number of images; the image 
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indexed by the remainder was selected. The viewport size was set 
to 75 � 75, the same as in [7,8].  

Like [18], we used the centered discretization proposed in [30] and 
the tolerance square size 19 � 19, that is, a tolerance of 9 pixels 
along both horizontal and vertical directions from a click-point. 
Passwords were of 5 click-points, resulting in a theoretical 
password space of about 43 bits for each account: an image contains 
<451 19⁄ > � <331 19⁄ > � 391  grid-squares; there are 391 

possibilities for each click-point, and 3918 ? 2@� possibilities or 
43 bits for five click-points. Note that this is the same size as the 
theoretical password space of PassPoints when it is implemented 
with the same configuration.  

7.3 Password Collection 
We recruited 96 experienced computer users, who were high school 
or college students, or staff members. They included 51 males and 
45 females, and their age ranges from 16 to 48. Before password 
collection, they were trained for the tasks to perform. Each used a 
Web browser on his/her computer to create a password with and 
log into a remote authentication server.  

Each participant was asked to create a password of 5 click-points 
for a fictitious bank account. The participants were encouraged to 
shuffle less to create more random and thus more secure passwords. 
A created password was confirmed immediately. After password 
enrollment, each participant was required to pass two login tests, 
namely 1-day and 7-day recalls. Each test allowed up to three trials. 
A participant who failed either test was required to re-create a 
password and to repeat the above procedure. Only passwords 
successfully passing both tests were collected. This was to ensure 
that collected passwords were all memorable for a reasonable time. 
We collected 96 passwords, one from each participant. They were 
created with on average 0.45 shuffles per click-point and a 
maximum of 2 shuffles per click-point.  

7.4 Experimental Results 
For each participant, we built personalized dictionaries of 35 bits 

(i.e. 2�8  entries) as described in Section 7.1. Words in a 
personalized dictionary were tested one by one in the order of their 
M-indices from low to high until either the password was found (a 
success) or the dictionary was exhausted (a failure). 

Figure 5 shows the number of passwords found at n-th bit range of 
guesses (i.e., found at the order of 2' guesses but not at or before 

the order of 2'$� guesses) for dictionaries built with the automated 
memorability and with the human-assisted memorability. The 
human-assisted memorability found passwords with much fewer 
guesses than the automated memorability. For example, the former 
found 2 passwords at the 25th bit range of guesses, and one more 
password at the 26th bit range of guesses, whereas the latter did not 
find any passwords until at the 32nd bit range of guesses. Figure 5 
also shows success rates with dictionaries of different sizes. Note 
that our 35-bit dictionaries could be truncated to any smaller size 
since dictionary entries were fully ordered.  

  

Figure 5: No. of found passwords at each bit range of guesses 

and success rate with dictionaries of different sizes. 

7.5 Analyses and Comparison 
To evaluate the attack efficiency, we adopt the partial guessing 
metric α-work-factor AB  recently introduced in [32], which 
measures the fixed minimum number of guesses per account 
needed to achieve success rate �. This metric can be converted to 
an effective key-length, denoted by ACB, which is the size of a space 
of uniformly distributed passwords that would produce the same 
value of �-work-factor [32], and defined in this paper as the size of 

the effective password space (SEPS) at success rate �.  

SEPS ACB has following properties. If an attack has a correct guess 
of the probability distribution of passwords and tests guesses in the 
order of their probabilities from high to low, then ACB  estimated 
from attack results increases with �: ACB D ACBEF, where G H 0. For 
a random guess attack, ACB  estimated from attack results is 
independent of �, i.e., a constant with respect to �. In addition, if 
the probability distribution of passwords is a uniform distribution, 
ACB, calculated from either attack results or the password probability 
distribution, is always independent of �. 

 

Figure 6: Attack efficiency: number of guesses. 

Figure 6 shows attack efficiency of �-work-factor AB vs. success 
rate � for both the automated memorability (in red circle) and the 
human-assisted memorability (in blue diamond). It also shows 
attack efficiency of two most efficient attacks on PassPoints: the 
automated attacks reported in [18] (in green triangle) and the 
human-seeded attacks reported in [15,16] (in purple cross), wherein 
the average of success rates on the two representative images was 
used as the success rate, and the highest success rate was used if 
multiple success rates were reported for a given bit range of 
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guesses. Figure 7 shows sizes of effective password spaces at 
different success rates for each attack shown in Figure 6. Note that 
the results of PCCP and PassPoints shown in both figures were 
obtained with the same setting. Their theoretical password spaces 
were all 43 bits, and thus they are comparable.  

 

Figure 7: Attack efficiency: size of effective password space. 

7.5.1 Analyses of PCCP Attack Results  
With 35-bit dictionaries, the success rate is 55.21% for the human-
assisted memorability and 45.83% for the automated memorability, 
and their effective password spaces are 35.86 and 36.13 bits, 
respectively.  

When success rate �  decreases, the effective password space 
remains nearly a constant size, varying within the range from 36.13 
to 36.58 bits, with an average of 36.31 bits, for the automated 
memorability. However, the effective password space reduces from 
35.86 bit at � = 55.21%  to 30.58 bits at � = 2.08%  for the 
human-assisted memorability. Meanwhile, the attack efficiency 
with respect to a random guess attack remains nearly at a constant 

improvement of 2@�$�J.�� = 103  times for the automated 

memorability and improves from 2@�$�8.KJ = 141 to 2@�$�L.8K =
5480  times for the human-assisted memorability. The latter is 
substantially more efficient than the former. 

The human-assisted memorability attack results imply that the 
PCCP passwords were not uniformly distributed. The trial order of 
words in this attack was positively correlated to the probability of 
PCCP passwords: passwords of higher probabilities were likely 
tested before passwords of lower probabilities. This indicates 
efficacy of our memorability model.  

The automated memorability attack results, on the other hand, 
suggest that words in a 35-bit dictionary had the same probability 
to be the password – this is equivalent to random guesses. That is 
to say, the M-index ranking order calculated with the automated 
memorability is irrelevant to the probability distribution of 
passwords. This is unsurprising since the automated memorability 
approximates the IPM model with only salience and 
distinguishability, but largely ignoring semantics of both points and 
objects.  

The automated memorability attack results also suggest that 
salience alone predicts click-points of PCCP passwords poorly. 
This can be explained by the fact that salience has a granularity of 
image region, which may not be closely correlated to which point 
in the viewport people likely select as a click-point in creating a 
PCCP password.  

We conclude that the automated memorability is effective in 
eliminating indistinguishable points (i.e., points unlikely to be a 
click-point) but ineffective in predicting click-points among 
distinguishable points.  

7.5.2 Comparison with Prior Analyses of PCCP  
A previous study [8] has examined PCCP’s security by studying 
the spatial distribution of click-points in PCCP. It estimates that a 
33-bit dictionary has a mere 3% chance in successfully guessing a 
password in the set that traverses all possible combinations of the 
collected click-points. The actual passwords take a tiny portion of 
the set, and thus this estimated strength should be much weaker 
than the actual strength of PCCP passwords. However, their 
approach and finding can be used to estimate the effective space for 
our PCCP passwords.  

According to [8], the click-points of the PCCP passwords in [14], 
which were created with a mean of 3 shuffles and a median of 1 
shuffle per click-point, approach complete spatial randomness. 
Using the same configuration, our passwords were created with 
fewer shuffles and thus should be more random than those in [14]. 
This suggests that the click-points of our PCCP passwords should 
also approach complete spatial randomness, which implies that the 
effective space of our PCCP passwords approaches the theoretical 
size, i.e., 43 bits.   

Our attack results indicate that the strength of our PCCP passwords 
is substantially weaker than the above estimate. Our automated 
memorability attack suggests that their effective space is about 36 
bits; our human-assisted memorability attack suggests that their 
effective space can be as small as 30.58 bits, and that their 
probability distribution is seriously biased.  

Therefore, both the automated memorability attack and human-
assisted memorability attack provide a substantially more accurate 
estimation of the strength of PCCP passwords than the previous 
study [8]. Our attacks are the first successful dictionary attacks on 
PCCP, which is robust to all prior dictionary attacks.   

7.5.3 Comparison with Attacks on PassPoints  
Figures 6 and 7 show that the human-seeded attacks on PassPoints 
are much more efficient than other attacks on either PassPoints or 
PCCP. When success rate � decreases from 31.6% to 7.0%, the 
effective PassPoints password space reduces from 15.0 bits to 4.8 
bits. This is dramatically smaller than the theoretical password 
space (43 bits). This implies that the probability distribution of 
PassPoints passwords is highly skewed: a significant portion of 
passwords have much higher probabilities and thus are highly 
predictable. The probability distribution of PCCP passwords, on the 
other hand, is much less skewed: the effective password space 
remains 30.58 bits at � = 2.08% while the theoretical password 
space has the same size. These results indicate that PCCP 
passwords are much harder to predict and thus much more resilient 
to dictionary attacks than PassPoints passwords, which agrees with 
our expectation that the viewport in PCCP would result in more 
random passwords, and explains why prior dictionary attacks, 
while effective in attacking PassPoints, are ineffective in attacking 
PCCP.  

Figures 6 and 7 also show that the automated attacks on PassPoints 
are slightly more efficient than our attacks on PCCP, albeit 
PassPoints passwords are much more predictable. With 35-bit 
dictionaries, they have similar success rates and similar sizes of 
effective password spaces, all around 50% and 36 bits, respectively. 
When success rate � decreases from around 50%, their effective 
password spaces start to deviate in size: the automated attacks on 
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PassPoints have a smaller size than our attacks on PCCP; the largest 
difference is about 3.5 bits for our human-assisted memorability 
attack and about 7.2 bits for our automated memorability attack. 
The large gap between the two curves of PassPoints attacks in 
Figure 7 indicates that the automated attacks on PassPoints did not 
capture the password probability distribution well enough, partially 
due to their lack of memory decay mechanism, i.e., 
distinguishability described in Section 5.1, in building attack 
dictionaries.  

7.6  PCCP Password Distribution Bias   
Here, we attempt to explain root causes of the PCCP password bias 
identified by our attacks, and why our IPM model can exploit the 
bias to predict PCCP passwords.  

Firstly, choosing a PCCP click-point is effectively equivalent to 
choosing a PassPoints click-point from the image portion covered 
by the viewport, referred to as the selection region of the click-
point. A selection region contains multiple spots since the 75× 75 
viewport is much larger than a 19 × 19 tolerance square. Among 
these spots, it is not surprising that some spots are more popular 
than others. That is to say, the hotspot effect may exhibit in the 
selection region of a click-point, although such local hotspots are 
not necessarily hotspots for the whole image. As local hotspots are 
more likely chosen than other spots in the selection region, this 
results in a biased distribution.  

Secondly, the distance between two points affects the chance that 
they fall into a selection region. If the viewport is never shuffled, 
two distant points whose spots would never fall into the same 
viewport area are independent in likelihood to be selected as a 
PCCP click-point. They do not contribute any bias to the password 
probability distribution. Sorting them by memorability levels is 
irrelevant and thus would not help pinpoint the click-point. In this 
case, the probability distribution bias is contributed by the 
preference for selecting as a click-point a “local hotspot” rather 
than any nearby points that are likely in the viewport area. This is 
the main cause to the distribution bias in our case.  

Since a local hotspot is likely more memorable, rank-ordering all 
points that are likely in the same viewport area by their 
memorability levels helps pinpoint a click-point and thus detect the 
biased password distribution, as our attacks do. However, such 
rank-ordering of distant points that would never fall into the same 
viewport area does not help attackers at all, which explains our 
earlier observation in Section 7.5.3 that PCCP passwords are 
substantially more difficult to guess than PassPoints passwords.  

However, when the viewport is shuffled in selecting a PCCP click-
point, distant points that would never fall into the same viewport 
area may fall into the selection region of a click-point, and thus are 
no longer independent. Shuffling breaks their independence, and 
one point may be more likely selected as a click-point than the 
other. In this case, shuffling is another source contributing to the 
probability distribution bias, and rank-ordering these distant points 
by their memorability levels may also help pinpoint click-points 
and thus detect the bias. 

7.7 Practical Implications 
As we have found, the effective PCCP password space can be as 
low as 30.58 bits. This is substantially weaker than PCCP’s 
theoretical strength and its commonly believed strength. To put it 
in perspective, this effective space size is about the same as the 
theoretical password space of Windows 8’s graphical scheme 
(which is 30.1 bits according to [5]), significantly larger than the 
effective password space of typical text passwords (which is about 

middle twenties or fewer bits [32]), but less than the effective 
password space of strong text passwords used for high-value 
accounts (which is about 35 to 45 bits [33]). Therefore PCCP still 
offers reasonable security.  

To improve the practical security of PCCP, we recommend 
increasing password length. Our experiment suggests that each 
click-point contributes about 6.12 (=30.58/5) bits in PCCP. If an 
effective password space of ) bits is needed, the number of click-
points in a password should be M)/6.12 N. For example, if the 
password length is set to 8 click-points, still a click-point per image, 
the effective password space will be boosted to about 49 bits, which 
outperforms what strong text passwords used for high-value 
accounts can offer. However, a usability study is needed to gauge 
how well users can cope with the increased length in terms of 
password memorability.  

We also recommend increasing image size. The images used in 
previous studies and ours were relatively small, 451 × 331. If we 
increase the image size to 640 × 480, the theoretical space of 5-
click passwords will increase from 43.1 bits to 48.4 bits. If we use 
images that have a similar density of memorable points as in our 
case study, the effective password space will increase from about 
30.58 bits to about 36 bits. We expect such a change in image size 
will have little or no negative impact on password usability.  

Finally, it improves PCCP security by reducing the number of 
shuffles allowed in choosing a click-point during password 
creation, and by reducing the viewport size. These measures will 
increase randomness in passwords. However, both could introduce 
usability concerns, and therefore careful empirical studies are 
needed for determining an appropriate design choice.  

8. CONCLUSION 
For the first time, we have introduced the concept of image point 
memorability, proposed the first heuristic IPM model and two 
methods to implement it, and applied them to novel and successful 
security analyses of click-based graphical passwords, leading to 
both new techniques and insights. 

On the defensive side, the IMP model can be used to generate high-
quality honeywords for any click-based graphical password 
schemes. Our contribution in this arena includes the first systematic 
method for generating high-quality graphical honeywords, and a set 
of criteria for judging honeyword quality. Our empirical study with 
PassPoints indicates that our method could generate honeywords 
that exhibit no statistically significant difference from real 
passwords. The honeywords generated with either realization of 
our IPM model were substantially better than a baseline method 
that generates honeywords by randomly selecting image points.  

On the offensive side, the IPM model offers a new approach to 
mounting effective dictionary attacks on any click-based graphical 
password schemes. In this arena, we have presented the first 
successful dictionary attack on PCCP, which is robust to all prior 
dictionary attacks. Our empirical evaluation of PCCP security via 
the IPM model shows that the probability distribution of PCCP 
passwords was seriously biased, in contrast to previous common 
beliefs. In our empirical study, the effective PCCP password space 
can be as small as 30.58 bits, which is substantially weaker than 
both its theoretical strength (43 bits) and its commonly believed 
strength. This result is a major contribution to the understanding of 
the real-world security of click-based passwords, and has 
significant implications.  

1228



 

To improve the practical security of PCCP, we recommend 
increasing its password length and image size. We also recommend 
considering the option of reducing the number of shuffles allowed 
in choosing a click-point during password creation, and the option 
of reducing the viewport size. As some of these measures might 
introduce usability concerns, we also recommend careful empirical 
studies to determine the right design choices for PCCP.   

The power of our IPM model, as evidenced by the achievements, 
stems mainly from 1) the insight that both memorable and 
forgettable aspects of image points should be captured, and 2) a 
memorability metric that is defined at the right granularity and that 
supports appropriate numerical methods for describing, measuring, 
and comparing relative memorability ranking orders of image 
points. All these also represent our main conceptual and technical 
innovations that distance this work from prior art. 

Our work sheds light on a new direction for analyzing graphical 
passwords, with ample potential for future research. For example, 
it is interesting to explore the IPM model’s applicability in 
analyzing security of, and in generating honeywords for, other 
graphical passwords. It is also useful to develop refined computer 
vision algorithms for approximating image point memorability. 
These are our ongoing work. 

Last but not the least, our work on image point memorability 
complements the research on the memorability of images as a 
whole and the memorability of individual image regions in multiple 
disciplines. We expect that it will interest a wide range of 
communities, including computer security, HCI, computer vision, 
psychology and cognitive science. 
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11. APPENDIX 

11.1 Representative Attack Results 
For easy comparison, Table 4 summarizes representative results of 
all prior attacks on click-based graphical passwords, together with 
the results of our attacks on PCCP presented in this paper. The first 
two columns list attack methods and their targeted graphical 
password schemes, respectively. The next three columns list 
success rates they achieved, sizes of their attack dictionaries and of 
their theoretical password spaces, respectively.  

Table 4: Attacks and representative results  

Attack 

Method 
Scheme 

Success 

rate 

(%) 

Dictionary 

size 

(bits) 

Theoretical 

space 

(bits) 

Automated 
[13] 

PassPoints 
8.45 31.6 

40 
61* 24.8* 

Automated 
[16] 

PassPoints 

0.9 – 9.1 35 

43 
 

Automated 
[17] 

8-15 24.6 

16 31.4 

Automated 
[18] 

7-16 26 

48-54 35 

Human-seeded
[15,16] 

20 to 36 31 to 33 

4 to 10 6-7 

Our automated PCCP 
45.83 35 

5.21 32 

Our human-
assisted 

55.21 35 

2.08 25 

*This result was obtained with image Bird shown in Figure 4, 
which is much simpler than the images used in other studies. 

11.2 Distinguishability via Color Dissimilarity  
11.2.1 Color Dissimilarity of Two Regions 
Dissimilarity of two regions can be compared by their color 
distributions, i.e., histograms. Ling et al. [28] proposed a metric to 
measure dissimilarity between two histograms by applying a 
diffusion process to the difference of two histograms. By modeling 
this diffusion approach, we define a metric 4O  to measure 
dissimilarity of regions P  and Q  of size  + × +  for one color 
component: 

4O(P, Q)  =  min
V

∑ |P(-, Y) − QZ[(-, Y)\|(,] ,      (3) 

where [  is a one-to-one mapping function between pixels in 
regions P and Q.  

The problem to find the optimal [ in Eq. (3) can be converted to a 
minimum-cost maximum-flow problem as follows: a directed 

graph ^ comprises 2 + 2+7 nodes, i.e., a source _, a sink `, and one 
node per pixel in two regions. There is an arrow from source _ to 
each node in P and an arrow from each node in Q to sink `, each 
arrow has capacity 1 and cost 0. For each node in P, there is an 
arrow from the node to every node in Q, with capacity 1 and cost 
equal to the absolute difference of their pixel values. In addition, 
for each aforementioned arrow, there is a reverse arrow pointing to 
the opposite direction with capacity 0 and cost being the opposite 
(i.e., negative) of the aforementioned arrow’s cost.  

A method to solve the min-cost max-flow problem is a heuristically 
improved Bellman-Form algorithm [29]. The set of edges from A’s 
node to B’s node without any residual capacity in the optimal 
solution defines an optimal one-to-one mapping function [ for Eq. 
(3), which is then used to calculate 4O(P, Q) with Eq. (3). 

We use Lab and Luv, two different color spaces, to calculate region 
dissimilarity, in hope that dissimilarity manifests in at least one 
color component. The Euclidean distance of five dissimilarity 
values each calculated in one of the five color components: L, a, b, 
u, v. is used as a metric of color dissimilarity of the two regions. 

11.2.2 M-Index by Color Dissimilarity 
To calculate color dissimilarity of a detectable point 0, we apply a 
sliding window aO of size n × n to move around 0, with its center 

being inside or on the boundary of a neighboring region ℕc of size 

(2� + 1) × (2� + 1) centered at 0, starting at (−N, −N) relative 
to 0 and with a moving step of Δ pixels along either direction. At 
each stop, unless aO  is too close to 0 , we calculate the color 

dissimilarity between aO and the region ac of size n × n centered 

at 0. More specifically, the color dissimilarity between aO and ac 

is calculated if the center of aO has a Manhattan distance from 0 
not less than a threshold f% and an Euclidean distance from 0 not 

less than another threshold fg . Regions very close to ac  are 

excluded since the range examined by dissimilarity should be 
significantly larger than that used in corner detection wherein 
immediate neighborhood is used. The average of the calculated 

dissimilarity values, denoted by h#iii, is used as a metric of color 
dissimilarity of detectable point 0. 

�
����  in Eq. (1) is a step-wise factor determined by the color 
dissimilarity of the point: 1) �
���� = �� > 1 to increase M-index 
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for small dissimilarity: h#iii < h� for a preset threshold h�, whereof 
0  is considered unlikely distinguishable; 2) �
���� = �7 < 1  to 

lower M-index for large dissimilarity: h#iii > h7 , whereof 0  is 
considered likely distinguishable; and 3) �
���� = 1 , i.e., no 
change, for dissimilarity falling between the two cases. 

In our experiments to be reported, we used an empirical approach 
to determine aforementioned parameters: we selected 
representative points on several typical images, and compared their 
relative orders given by human labeled results (see Section 4.2) 
with those by M-indices calculated with Eq. (1) using different 
values of the parameters. The set of values that produced best match 
was selected. They were: n = 7, N = 15, Δ = 5, f% = 10, fg =
7, h�=240, h7 = 310, �� = 2, and �7 = �

√7 ≈ 0.71.  

11.3 Distinguishability via Gradient 

Dissimilarity  
We first calculate gradients of an image. For each detectable point 
0, we use a rectangle k, with its short edge centered at 0, to rotate 
around 0. Starting at 0°, we calculate the average of gradients in k 
per every l degree, resulting in m = <360/l> values at m different 
angles around 0.  

Uniformity of the m  values at different angles indicates how 
similar the point’s neighborhood is. We use a simple empirical 
metric to measure this uniformity: ratio � of the maximum to the 
average of the m  values. A large �  means a large change of 
gradients at different directions around 0.  

����� in Eq. (1) is a step-wise factor determined by ratio � : 1) 

����� = "� ≫ 1 to increase M-index significantly for small �: � <
�� where �� is a preset threshold, whereof the point’s neighborhood 
is so uniform that the point is considered very unlikely 

distinguishable; 2) ����� = 1, i.e., no change, for large �: � > �7, 

wherein the point’s neighborhood is very dissimilar, and the point 

is very likely distinguishable, and 3) ����� = "7 > 1 to increase 

M-index slightly for � between the two cases.  

In our experiments, the above parameters were determined in the 
same way as those in the color dissimilarity. The following values 
were used: the size of rectangle k was 3 × 15; l = 8°, resulting 
in m = 45; �� = 1.45, �7 = 1.8; "� = 10, and "7 = 2.  

11.4 Adjusting M-Index by Click Patterns 
Line is detected by using least-squares to fit 5 points in a word with 
a straight line. If the square root o of the least square error is less 
than a preset threshold op , o < op , and the word’s sequence 
follows a consistent direction, the word is determined to exhibit 
Line with a confidence level: 

qr = 1 − o/op,    0 ≤ qr ≤ 1,  (4)  

and its M-index is multiplied by a factor sr ≤ 1 for the automated 
memorability or subtracted by a subtrahend 5tr ≥ 0  for the 
human-assisted memorability, where tr is the subtrahend per point 
in the word. Both sr and tr depend on confidence level qr.  

For a sequence of points, one point to the next point forms a 
directional line. Each pair of adjacent directional lines forms an 
angle. Regular is detected by checking consistency of angles of 
adjacent directional lines in a word. Excluding angles very close to 
0 degree, if the remaining angels are all positive or negative, then 
the sequence is counter clock-wise or clock-wise. If they have 
mixed signs but their absolute values are all smaller than a 
threshold, the sequence is roughly alone one direction. In both 
cases, if the standard deviation l of all the angles is less than a 
preset threshold lp, the word is determined to exhibit Regular with 
a confidence level: 

qu = 1 − l lp⁄ ,    0 ≤ qu ≤ 1,  (5)  

and its M-index is multiplied by a factor su ≤ 1 for the automated 
memorability or by subtracting 5tu ≥ 0  for the human-assisted 
memorability. Again, both su and tu depend on confidence level 
qu. 

In our experiments, Line was set twice the effect as Regular at the 
same confidence level. In addition, Regular at confidence level 1 
was set to match multiplication factor �7 in Appendix 11.2 for the 
automated memorability, and Line was set to match the adjusted 
range in Section 4.3 per point for the human assisted memorability. 
The parameters were then calculated as: sr = 1 − 0.5qr ∈ [0.5,1] 
and su = 1 + qu x �

√7 − 1y ∈ [ �
√7 , 1] ; tr = qr ∈ [0, 1]  and tu =

0.5qu ∈ [0, 0.5].  
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