
The Robustness of Hollow CAPTCHAs

Haichang Gao, Wei Wang, Jiao Qi,
Xuqin Wang, Xiyang Liu

Institute of Software Engineering
Xidian University, Xi’an, Shaanxi

710071, P.R.China
hchgao@xidian.edu.cn

Jeff Yan
School of Computing Science
Newcastle University, UK
Jeff.Yan@ncl.ac.uk

ABSTRACT
CAPTCHA is now a standard security technology for dif-
ferentiating between computers and humans, and the most
widely deployed schemes are text-based. While many text
schemes have been broken, hollow CAPTCHAs have emerged
as one of the latest designs, and they have been deployed by
major companies such as Yahoo!, Tencent, Sina, China Mo-
bile and Baidu. A main feature of such schemes is to use
contour lines to form connected hollow characters with the
aim of improving security and usability simultaneously, as
it is hard for standard techniques to segment and recognize
such connected characters, which are however easy to human
eyes. In this paper, we provide the first analysis of hollow
CAPTCHAs’ robustness. We show that with a simple but
novel attack, we can successfully break a whole family of hol-
low CAPTCHAs, including those deployed by all the major
companies. While our attack casts serious doubt on the vi-
ability of current designs, we offer lessons and guidelines for
designing better hollow CAPTCHAs.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection—authentication, unau-
thorized access

General Terms
Security, Human Factors.

Keywords
CAPTCHA; Convolutional Neural Network; Graph search;
Security

1. INTRODUCTION
Since its invention, CAPTCHA has been widely deployed

for defending against undesirable and malicious bot pro-
grams on the Internet [20]. The most widely used CAPTCHAs

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profi or commercial advantage and that copies bear this notice and the full cita-
tion on the firs page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specifi permission
and/or a fee. Request permissions from Permissions@acm.org.
CCS’13, November 04 - 08, 2013, Berlin, Germany.
Copyright 2013 ACM 978-1-4503-2477-9/13/11 ...$15.00.
http://dx.doi.org/10.1145/2508859.2516732 .

are text-based schemes [24], which typically require users to
solve a text recognition task.

A good CAPTCHA should be friendly for humans to solve
but hard for computers. It turns out that this balance
between security and usability is hard to achieve. So far,
many text CAPTCHAs have been broken, including those
deployed by major companies such as Microsoft, Yahoo! and
Google [8, 23]. However, as predicted in [23], CAPTCHAs
are going through the same process of evolutionary develop-
ment, just like cryptography and digital watermarking, with
an iterative process in which successful attacks lead to the
development of a next generation of systems.

In the last couple of years, Hollow CAPTCHAs have emerged
as one of the latest text-based designs. They have been
deployed by major websites such as Yahoo!, Baidu, Sina,
Tencent and the online payment system (CmPay) of China
Mobile, each serving tens of millions users on a daily basis.
A main feature of such hollow CAPTCHAs is to use contour
lines to form connected characters (see Figure 1) with the
aim of improving security and usability simultaneously, as
it is hard for state-of-the-art character recognition programs
to segment and recognize such connected characters, which
are however easy to human eyes.

(a) Yahoo! (b) Tencent

(c) Sina (d) CmPay

(e) Baidu

Figure 1: Hollow CAPTCHAs.

Given the high profiles of the companies that have de-
ployed hollow CAPTCHAs, it is of practical relevance to
examine the robustness of such hollow schemes, i.e. their
resistance to automated attacks, which is an important se-

1075

curity property. On the other hand, as Hollow CAPTCHAs
represent a new type of text scheme, it is also of academic in-
terest to study their design and security. To our best knowl-
edge, no such studies are available in the literature.

In this paper, we provide the first analysis of the robust-
ness of hollow CAPTCHAs. We show that with a novel and
generic attack, we can successfully break a whole family of
hollow CAPTCHAs. The success rates of our attack on Ya-
hoo!, Tencent, Sina, CmPay and Baidu schemes are 36%,
89%, 59%, 66% and 51%, respectively. It takes just seconds
for our attack to break each of the schemes on a standard
desktop computer. Therefore, our attack imposes a realistic
threat, which might be misused by adversaries.

As a variety of design features are used in the hollow
schemes, we also pinpoint which features contribute to se-
curity, and which do not. Our analysis provides a set of
guidelines for designing hollow CAPTCHAs, and a method
from comparing security of different schemes. We also dis-
cuss how to design better hollow CAPTCHAs.

This paper is organized as follows. Section 2 discusses
related work. Section 3 provides an overview of five repre-
sentative hollow CAPTCHAs. Section 4 gives an overview
of our attack, and Section 5 describes the attack in de-
tails. Section 6 shows our attack results. Section 7 dis-
cusses lessons we have learnt, and how to design better hol-
low CAPTCHAs. Section 8 concludes the paper.

2. RELATED WORK
Moni Naor [15] first discussed the notion of Automated

Turing Tests, but did not providing a formal definition or
concrete designs. The first practical Automated Turing Test
was developed by Alta Vista [12] to prevent bots from auto-
matically registering web pages. This system was effective
for a while but then was defeated by common OCR (Optical
Character Recognition) technology.

In 2003, Mori and Malik [13] used sophisticated object
recognition algorithms to break Gimpy (which used clut-
ter interference) and EZ-Gimpy (which used texture back-
grounds), achieving a success rate of 33% and 92%. Moy
et al [14] developed distortion estimation techniques to at-
tack EZ-Gimpy with a success rate of 99% and four-letter
Gimpy-r with a success rate of 78%. In 2005, Chellapilla et
al [19] successfully broke a range of CAPTCHAs with a suc-
cess rate ranging from 4.89% to 66.2%. Early attack efforts
also include the PWNtcha project [3].

In 2006, Yan and El Ahmad [22] broke most visual schemes
provided at Captchaservice.org, a publicly available web ser-
vice for CAPTCHA generation, with a success rate of nearly
100% by simply counting the number of pixels of each seg-
mented character, although these schemes were all resistant
to the best OCR software on the market. New character seg-
mentation techniques for attacking a number of text-based
CAPTCHAs were developed by Yan and El Ahmad [23] in
2008, including the earlier mechanisms designed and de-
ployed by Microsoft, Yahoo! and Google, and these have
achieved a segmentation success rate of 92% against Mi-
crosoft CAPTCHA. In 2010, Yan’s team broke the text-
based CAPTCHAs that depend partially on the Gestalt Per-
ception principle by merging black and shared white com-
ponents to form individual characters [9].

In 2011, Bursztein et al. showed that 13 CAPTCHAs
on popular websites were vulnerable to automated attacks
[7], but they achieved zero success on harder schemes such

as reCAPTCHA and Google’s own scheme. In the same
year, Yan’s team published an effective attack on both of
these schemes [8]. The CAPTCHA using moving-images in
NuCaptcha which provided users with sloshing characters
was analyzed by Xu et al in 2012 [21]. Table 1 lists some
text CAPTCHAs that were successfully attacked.

We note that hollow CAPTCHAs have never been dis-
cussed in the literature prior to our current paper, and that
they are distinct from other text-based CAPTCHAs dis-
cussed to date.

3. HOLLOWCAPTCHAS: POPULARREAL
WORLD SCHEMES

We choose to study 5 CAPTCHAs listed in Figure 1,
which we consider represent the state of the art of hollow
CAPTCHA designs, for two main reasons.

First, these schemes have been deployed by popular real
world websites, and have an impact on hundreds of millions
of users. For example, Yahoo!, Baidu, Sina and Tencent
are all among the largest websites in the world; CmPay [2]
is the online payment system of China Mobile, which en-
joys a 70% share of the domestic mobile service market in
China and has nearly 700 million users. Yahoo! use their
hollow CAPTCHA in services such as their email system
and password helper [6]. Sina use their scheme for services
such as Weibo [4], the most popular micro blog platform in
China with about 500 million users (also a Chinese equiva-
lent to Twitter). The Baidu scheme is used for their account
registration and maintenance [1]. With 600+ million users,
Baidu is the largest search engine in China and one of the
largest social network platforms. The Tencent scheme is
used in their security center service [5].

Second, these schemes represent a range of different de-
signs, with a variety of design features. For example, some
schemes use interference arcs (e.g. CmPay and Baidu); oth-
ers do not (e.g. Yahoo!, Tencent and Sina). Yahoo! uses
character strings of a varied length, while others all use a
fixed string length. Some schemes (e.g. Yahoo!) inten-
tionally introduce a significant variation in the thickness of
hollow portions across characters, and even in a single char-
acter; others do not vary this thickness much and it is more
or less uniform.

A common feature is that all characters are presented as
hollow objects. In general, hollow schemes appear to be a
clever idea. First proposed by Google, Crowding Characters
Together (CCT) has been widely adopted. This standard
security mechanism for text CAPTCHAs improves security
but has usability issues. For example, when characters are
crowded together too much, confusing character pairs will
appear and it is hard for people to recognize them [24].
However, hollow schemes allow characters connected or over-
lapped with each other, but maintain a reasonable usability.
In a sense, this approach can be regarded as a clever variant
of the CCT segmentation-resistant mechanism.

Since there are only (or mainly) randomly-generated con-
tours in each CAPTCHA, it becomes difficult to detect each
character’s features using standard technologies. Common
character recognition methods, such as template matching
and other feature-based algorithms, that are effective in rec-
ognizing solid characters, are inapplicable to hollow charac-
ters. Moreover, characters’ contour lines may connect or
overlap with each other to prevent segmentation. When

1076

Table 1: CAPTCHAs which have been attacked successfully
Origin Samples Success

rate
Comments

Captchaservice.org
[22]

92%
Weaknesses: constant pixel count of the same character,

non-textured background, constant colors,
no perturbation, only capital characters used

Clubic [3] 100%
Weaknesses: constant font, no rotation, no deformation,

aligned glyph, constant background, weak color
variation, weak perturbation

Slashdot [3] 89%
Weaknesses: constant font, no deformation,
constant colors, weak perturbation, weak

color variation

Microsoft [23] 60%
Weaknesses: easy to tell random arcs from valid
characters by examining characteristics, easy to

locate connected characters by ‘even cut’

Google [8] 62%
Weaknesses: non-textured background,

constant colors, no perturbation

NuCaptcha [21] 36.3%
Weaknesses: weak overlapping, constant color
of ‘codewords’, short length of ‘codewords’,

constant font

Megaupload [9] 78.3%
Weaknesses: shared components are white,

non-textured background,constant font, short and
fixed length, no perturbation

there are interference arcs, contour lines will be cut through
or otherwise interrupted. Presumably, this will make it even
harder for computers to recognize hollow characters.

We also note that two main segmentation-resistant mech-
anisms, namely CCT and interference arcs, have never been
used simultaneously in a single CAPTCHA design before.
However, some hollow CAPTCHAs apply the two mecha-
nisms together, without introducing serious usability con-
cerns in our experience.

4. OUR ATTACK: AN OVERVIEW
The key insight behind our attack is the following. We

can manage to extract from hollow CAPTCHAs character
strokes or components, and convert them to solid ones. This
is not straightforward, as some contour lines are broken; we
need to automatically repair them first. Furthermore, stan-
dard methods like Color Filling Segmentation (CFS, intro-
duced in [23]) will pick up not just character strokes or com-
ponents, but also those that do not belong to any character
and which we call noise components. Therefore, it is essen-
tial to differentiate between legitimate character strokes and
noise components automatically.

On the other hand, character strokes extracted this way
are not linked with each other. Instead, they are scat-
tered around. We implement a convolutional neural network
(CNN) [11, 16, 18] as our recognition engine. CNN provides
partial invariance to translation, rotation, scale and defor-
mation. It extracts successively larger features in a hierar-
chical set of layers. Besides, as a stable and fast classifier,
CNN has been successfully applied to character recognition;
it takes only milliseconds to classify a character image.

Next, just like piecing together a jigsaw puzzle, we use
our CNN recognition engine to try different combinations of
adjacent strokes. With a graph search algorithm that we
have designed, we can find the most likely combination as
the right result with a good success rate.

Figure 2: The pipeline of our attack.

The high-level flow of our attack, shown in Figure 2, in-
cludes three main sequential steps: 1) pre-processing pre-
pares each challenge image with standard techniques; 2) ex-
tracting character strokes; 3) segmentation and recognition
with the CNN engine assisted graph search.

5. OUR ATTACK: TECHNICAL DETAILS
We choose Yahoo! and CmPay as examples to explain

key techniques in our general attack. Note that these tech-
niques are generically applicable to all the schemes, as evi-

1077

(a) (b)

Figure 3: Binarized images. (a)Yahoo!, (b)CmPay.

(a) (b)

(c) (d)

Figure 4: Repair contour lines. (a)The original im-
age, (b)A blue rectangle indicates some identified
break points, (c)The amplified blue rectangle where
break points are highlighted in red, (d)The image
with breakpoints connected.

denced later by our implementation and evaluation (details
see Section 6).

5.1 Pre-processing
Image binarization. This is to covert a color or gray-

scale image into black-and-white one. We use the standard
Otsu’s threshold method [17]. Figure 3 shows the binarized
images.

In the cases of CmPay and Baidu, binarization does not
just convert an image into black-and-white, but also removes
thin interference arcs whose colors differ significantly from
both hollow characters and thick arcs.

Repair contour lines. Some challenges use hollow char-
acters whose contour lines are broken (e.g. Figure 4 (a)), for
which CFS will fail filling the hollow parts. In the case of
CmPay, binarization created broken contours, too (see Fig-
ure 3 (b)). In order to make CFS work, these broken contour
lines must be repaired. We use Lee’s algorithm [10] to au-
tomatically detect and then repair broken contours. This
algorithm was initially designed for solving maze routing
problems.

First, we identify break points in contour lines. Similar
to the maze solving problem, a contour is regarded as the
corridor, and break points as dead-ends in the maze. We
use Lee’s algorithm to traverse the contour line, and mark
the dead-end pixel of each path in red (e.g. Figure 4 (c)).
Then, we examine the relative positions of each pair of break
points, and draw a one-pixel-thick line to connect those pairs
that look valid (see Figure 4 (d)).

Incorrect connections may be created e.g. Figures 4(d)
and 5, but our attack can cope with them, as explained
later.

Figure 5: Contour repair: another example

(a) (b)

Figure 6: Images after CFS: (a)Yahoo!, (b)CmPay

5.2 Extracting Character Strokes
Fill hollow parts with CFS. This uses a flooding al-

gorithm to detect connected non-black pixel blocks. It will
pick up both character components and noise ones, if they
have closed contours. We use a distinct color to fill, and thus
identify, each component. After this step, the background
color in an image is set to lightgray, but contour lines and
other solid parts such as thick interference arcs remain in
black. Figure 6 shows the images after CFS.

Noise component removal. As illustrated in Figure 7,
there are at least three types of undesirable components (or
chunks) which we consider as noise: 1) the closed part within
a character, 2) those formed by two connected characters,
and 3) those formed by wrong connections introduced by the
contour repair algorithm.

We first define parameters θ and δ for each color com-
ponent: θ = Cg/C and δ = C/S, where Cg denotes the
number of edge pixels that have a lightgray neighbor, C de-
notes the total number of edge pixels in this component, and
S denotes the total number of pixels in this component.

With properly chosen threshold values a and b, we have
the following: if θ < a for a component, it is a noise compo-
nent of the first two types; if δ < b, it is a noise component
of the third type. We determine the values a and b via a
learning algorithm that analyzes a small sample set of data.

In schemes like CmPay, an additional type of noise com-
ponents was introduced by thick interference arcs. However,
they are easy to remove by detecting such arcs’ existence.

We have tested our noise component removal on all the
5 hollow schemes, and it works on all of them. Compo-
nents surviving our noise removal are considered to belong
to character bodies, and are thus preserved (see Figure 8).

Contour line removal. Removing contour lines is straight-
forward for CmPay, but requires more subtle techniques
for the Yahoo! scheme. We have implemented both the
straightforward and the more subtle approaches. Which ap-

Figure 7: Three types of noise components.

1078

(a) (b)

Figure 8: After removing noise components.
(a)Yahoo!, (b)CmPay.

(a) (b)

Figure 9: After contour line removal. (a)Yahoo!,
(b)CmPay.

proach is needed for handling a particular Cpatcha scheme
can be automatically determined.

After removing the noise components in the CmPay scheme,
black pixels are the interference arcs and contour lines, and
all character strokes are in non-black colors. So it is straight-
forward to remove both contour lines and the interference
arcs by switching all black pixels to the background color.

In the Yahoo! scheme, after removing noise components,
black pixels in an image are character contours, incorrect
connecting lines introduced by our contour repair algorithm,
or a character stroke. We need to remove the first two types
of black pixels, but keep the third. The second type is always
of one-pixel thickness, and easy to remove first. Then we
perform an image dilation on each stroke filled with a non-
black color. The stroke is dilated to cover its surrounding
contour line. That is, the dilation algorithm switches the
contour line to the color of the stroke body to merge them.
After this step, all remaining large blocks of black pixels
have to be character strokes. Figure 9 shows images after
contour removal.

Clean-up. Tiny pixel blocks might be created by contour
line removal. In clean-up, they are either removed directly
or merged with adjacent larger strokes via an automated
algorithm. Figure 10 shows the resulting images. After this
step, what remain in an image are all character strokes or
components.

5.3 Segmentation and Recognition
The next step is to find how to form strokes into individ-

ual characters and recognize what the characters are. Now
the problem is similar to a jigsaw puzzle in that each stroke
is a piece of a master design. However, there is no fixed pat-
tern for us to exploit for finding the right combination. The
number of strokes is always larger than the number of char-
acters to be formed, and the latter is a variable in schemes

(a) (b)

Figure 10: After clean-up. (a)Yahoo!, (b)CmPay.

(a) (b)

Figure 11: What remains are all character strokes,
rank ordered. (a)Yahoo!, (b)CmPay.

such as Yahoo!; so there can be many possible combinations.
Our approach is to combine adjacent strokes into possible
characters and determine the most likely result.

First, all strokes in an image are numbered in an incre-
mental order from the upper left to lower right (Figure 11).

Then we try to combine strokes or components following
the incremental rank order. An n× n table is built for each
image, where n is the total number of strokes in the image.
A cell at the intersection of row i and column k in the table
indicates whether it is feasible to combine strokes i, i + 1,
..., k altogether to form a single component.

If such a combination is infeasible, the cell (i, k) will be set
to NULL. This occurs in one of the following three scenarios:
(1) when its row index i is larger than its column index k
(we try combinations only in a monotonic order); (2) when
the width of the combination is greater than the largest pos-
sible character width, which is empirically established with
a simple analysis of the sample set of data; (3) when the
width of the combination is less than the smallest possible
character width, which is also empirically established with
a simple analysis of the sample set.

If it is feasible to combine strokes i, i + 1, ..., k to form
a single component, we let the CNN decide which charac-
ter this component is likely to be, and the cell (i, k) stores
the neural network’s recognition result, along with a confi-
dence level the CNN feels about this result. This feasibility
condition is met in all situations except the above three.

In our implementation, an image input to the CNN is
normalized to the size of 28 × 28; the output confidence
level is calculated after layer-by-layer forward propagation.
Since the activation function used is a scaled version of the
hyperbolic tangent [11], scaling causes the confidence level
to vary between -1.7159 and 1.7159. The larger a confidence
value is, the more likely the recognition result is correct.

Tables 2 and 3 show a n× n table for the Yahoo! sample
and the CmPay sample, respectively. For example, in ta-
ble 2, the cell (1, 1) indicates that the CNN recognize this
single stroke as ‘r’ with a confidence level of .479; the cell
(1, 3) indicates that the combination of strokes 1, 2 and 3
is recognized as ‘M’ with a confidence level of .432. Each
empty cell (i, k) indicates that a combination of strokes i,
i+ 1, ..., k is infeasible for one reason or another.

A n × n table gives all plausible stroke combinations for
an image. Our task now is to use information in the table to
find the most likely way of forming characters, i.e., finding
the best segmentation or partition.

Each n× n table is actually equivalent to a directed and
weighted graph. Figure 12 gives such graphs that are equiva-
lent to Tables 2 and 3, respectively. In each graph, the nodes
are numbered from 1 to n + 1, and nodes 1, 2, ... n repre-
sent the corresponding strokes, respectively. An arc < i, j >
(i.e. a directed edge linking vertexes i and j) indicates that
the combination of strokes from i to j − 1 is feasible, and

1079

Table 2: The n× n table generated by CNN for the Yahoo! sample in Figure 11.
1 2 3 4 5 6 7 8 9 10 11

1 r/0.479 A/-0.157 M/0.432
2 A/-0.027 M/-0.358 M/1.025
3 T/0.01 W/-0.43
4 L/0.255 W/0.216
5 A/0.482 V/-0.2 V/-0.242
6 V/0.238 p/1.087 A/-0.384
7 y/-0.151 w/-0.462 V/-0.127
8 V/0.358 V/1.11 H/-0.088 w/0.238
9 r/-0.035 6/-0.519 M/-0.255
10 c/0.554 d/1.075
11

Table 3: The n× n table generated by CNN for the CmPay sample in Figure 11
1 2 3 4 5 6 7 8 9

1 K/0.935 K/0.781 H/-0.229
2 K/0.647 4/0.493 4/-0.445
3 6/0.593 U/0.692
4 6/0.06 U/0.688
5 J/0.093 U/-0.332
6
7 Q/1.102
8 R/0.229 R/1.057
9 S/1

the associated weight gives both the recognition result of
this combination and the confidence level calculated by the
neural network for this result. That is, the number of arcs
in a graph equals to the number of non-empty cells in its
corresponding table.

Now, our task of finding the best segmentation and thus
the most likely recognition result is equivalent to the follow-
ing graph search problem:

• Find a path that starts from node 1 and ends at node
n + 1, and in which each node is traversed only once,
and a node always has a larger index number than all
its predecessor(s).

• The path’s length (i.e. the number of edges on the
path) is exactly the same as the number of characters
that are supposed to be in a CAPTCHA image.

Note: the rationales are the following: all the strokes
in an image will be used to form individual characters,
but each stroke will be used only once and no stroke
is shared in adjacent characters.

• The sum of confidence levels along the path is the
largest possible in the graph.

We use a depth-first-search (DFS) algorithm to select the
optimal partition which has the highest confidence sum. It
is simple for our algorithm to cope with schemes like Yahoo!,
where a varied string length is used.

For convenience, we utilize the n× n tables to implement
the graph search algorithm. The search always starts from
the first row in table, and progresses from the smallest index
number to the largest in an incremental order.

The pseudo code below sketches the recognition process.
Si,j denotes the resulting character which the CNN recog-
nizes as the component combined from strokes i, i+ 1, ..., j;
ai,j is the confidence level calculated by the CNN for this
result; step represents the number of characters that has
been recognized; sum represents the confidence value sum
of strokes 1 to j, and S represents the recognition result of
combined strokes numbered from 1 to j.

As generated by our attack program, tables 4 and 5 show
all likely partitions and for each partition, its sum of confi-
dence levels. The italicized items highlighted in red in each
table indicate the optimal partition that has the highest sum
of confidence levels and that matches a legitimate length of
CAPTCHA strings. In both cases, ‘rMApVd’ and ‘KUQR’
are correct recognition results.

We note that simply choosing the cells with a relatively
large confidence level does not work (well). The reason is
that this greedy strategy skips many possible combinations,
and thus the recognition success will be low. In comparison,
our algorithm performs a thorough search of each graph, and
will not miss any possible results. In Table 2, the confidence
levels in the cells (1, 1) and (5, 5), both of which are on the
optimal path, are actually smaller than that in the cell (10,
10), which is however not on the optimal path.

The sum value p of the selected partition is described
as follows: p = max (a1,i + ai+1,j + · · ·+ am+1,k + ak+1,n),
where 0 < i < j < m < k < n, and we assume that the opti-
mal partition consists of strokes numbered from 1 to i, then
strokes i+1 to j, ..., m+1 to k, and finally strokes k+1 to
n. The number of polynomial terms in the equation equals
the string length in the CAPTCHA.

1080

Table 4: Every likely result and its confidence sum for the Yahoo! Sample in Figure 11
Result Confidence Result Confidence Result Confidence Result Confidence Result Confidence

rATAVyVM 1.135 rATAVyVd 3.216 rATAVyw 1.27 rATAVwrd 1.76 rATAVwM 0.465
rATAVVd 2.131 rATApVrd 3.431 rATApVM 2.136 rATApVd 4.218 rATApw 2.271
rATAArd 1.6 rATAAM 0.305 rATVyVrd 1.508 rATVyVM 0.213 rATVyVd 2.295
rATVyw 0.348 rATVwrd 0.838 rATVwM -0.456 rATVVd 1.209 rATVVrd 1.618
rATVVM 0.323 rATVVd 2.405 rAVVyVrd 1.506 rAVVyVM 0.211 rAVVyVd 2.293
rAVVyw 0.346 rAVVwrd 0.836 rAVVwM -0.458 rAVVVd 1.207 rAVpVrd 2.507
rAVpVM 1.212 rAVpVd 3.294 rAVArd 0.676 rMLAVyVM 1.056 rMLAVyVd 3.138
rMLAVyw 1.191 rMLAVwrd 1.681 rMLAVwM 0.386 rMLAVVd 2.052 rMLApVrd 3.352
rMLApVM 2.057 rMLApVd 4.139 rMLApw 2.192 rMLAArd 1.521 rMLAAM 0.226
rMLVyVrd 1.43 rMLVyVM 0.135 rMLVyVd 2.217 rMLVyw 0.27 rMLVwrd 0.76
rMLVwM -0.534 rMLVVd 1.131 rMLVVrd 1.54 rMLVVM 0.245 rMLVVd 2.327
rMwVyVrd 1.349 rMwVyVM 0.053 rMwVyVd 2.135 rMwVyw 0.188 rMwVwrd 0.679
rMwVwM -0.616 rMwVVd 1.05 rMwpVrd 2.35 rMwpVM 1.055 rMwpVd 3.136
rMwArd 0.519 rMAVyVrd 3.472 rMAVyVM 2.177 rMAVyVd 4.259 rMAVyw 2.312
rMAVwrd 2.802 rMAVwM 1.507 rMAVVd 3.173 rMApVrd 4.473 rMApVM 3.178
rMApVd 5.26 rMAArd 2.642 rMVyVrd 2.551 rMVyVM 1.255 rMVyVd 3.337
rMVwrd 1.881 rMVVrd 2.661 ATAVyVrd 1.821 ATAVyVM 0.526 ATAVyVd 2.608
ATAVyw 0.661 ATAVwrd 1.151 ATAVwM -0.143 ATAVVd 1.522 ATApVrd 2.822
ATApVM 1.527 ATApVd 3.609 ATAArd 0.991 ATVyVrd 0.9 ATVyVM -0.394
ATVyVd 1.686 ATVwrd 0.23 ATVVrd 1.01 AVVyVrd 0.897 AVVyVM -0.397
AVVyVd 1.684 AVVwrd 0.227 AVpVrd 1.899 MLAVyVrd 2.663 MLAVyVM 1.367
MLAVyVd 3.449 MLAVyw 1.502 MLAVwrd 1.993 MLAVwM 0.698 MLAVVd 2.364
MLApVrd 3.664 MLApVM 2.369 MLApVd 4.45 MLAArd 1.833 MLVyVrd 1.741
MLVyVM 0.446 MLVyVd 2.528 MLVwrd 1.071 MLVVrd 1.851 MwVyVrd 1.66
MwVyVM 0.365 MwVyVd 2.447 MwVwrd 0.99 MwpVrd 2.661

Table 5: Every likely result and its confidence sum
for the CmPay sample in Figure 11

Result ConfidenceResult ConfidenceResultConfidence
KUQR 3.786 KUQR 3.632 HUQR 1.598

DepthFirstSearch()
i← 1
step← 0
p← 0
sum← 0
R← NIL
S ← NIL
Traverse(i, step, sum, S)
print R

Traverse(i, step, sum, S)
for j ← i to n
if ai,j �= NULL

then sum← sum+ ai,j

S ← strcat(S,Si,j)
step← step+ 1

else continue
if step ∈ CAPTCHA length and p < sum

then p← sum
R← S
if step ≤ max CAPTCHA length

then Traverse(j + 1, step, sum, S)

Table 6: The success rate and speed of our attack

Scheme
Success on
sample set

Success on
test set
(T)

Avg time per
challenge

(R)

Avg time
per success

(T/R)
Yahoo! 56% 36% 5.30 seconds 14.72 seconds
Tencent 93% 89% 1.23 seconds 1.38 seconds
Sina 63% 59% 1.77 seconds 3.00 seconds

CmPay 73% 66% 4.25 seconds 6.43 seconds
Baidu 57% 51% 3.87 seconds 7.58 seconds

6. EVALUATIONS
We have implemented our attack and tested it on all the

5 hollow schemes. We present our evaluations as follows.
Data Collection. For each of the 5 schemes, we collected

from the corresponding website 1000 random CAPTCHAs
as a sample set, and another 500 as a test set. For schemes
like Yahoo!, Tencent and CmPay, the data were collected in
August 2012; for schemes such as Sina and Baidu, the data
were collected in April 2013.

Training Neural Network. The template library for
training our convolutional neural network was prepared man-
ually. We extracted 4244 characters from Yahoo! samples,
3754 characters from Tencent samples, 2680 characters from
Sina samples, 3670 characters from CmPay samples, and
2940 characters from Baidu samples, to train the CNN.

Success Rate. We follow a common practice to evaluate
our attack’s success. For the Yahoo! scheme, we achieved
a success rate of 56% on the sample set. That is, 56% of
the challenges were entirely guessed correctly. Then we ran
our attack on the test set, about which our program had

1081

(a)

(b)

Figure 12: The equivalent graphs of Tables 2 and 3.

no prior knowledge about any particular sample within; we
achieved a success rate of 36%.

Similarly, we ran our attack on all other schemes. The
success rates are listed in Table 6. For the Tencent scheme,
we achieved 93% success on the sample set and 89% on the
test set. For Sina, we achieved 63% success on the sample
set and 59% on the test set. For CmPay, our success was
73% on the sample set and 66% on the test set. For Baidu,
our success was 57% on the sample set and 51% on the test
set.

A commonly accepted goal for CAPTCHA robustness is
to prevent automated attacks from achieving a success rate
of higher than 0.01% [23]. Bursztein et al [7] considered this
goal too ambitious, and they suggested that a CAPTCHA
scheme is broken when the attacker achieves an accuracy
rate of at least 1%. According to either criterion, all the five
hollow schemes are successfully and terribly broken by our
attack.

In reality, an attacker could achieve a success rate even
higher than reported here, as he could simply skip a chal-
lenge if the confidence level for recognizing it is not large
enough. Instead, he could keep requesting new challenges,
and only when he is confident enough with a recognition
result, he submits the answer to the CAPTCHA.

Attack Speed. We implemented our attack in C#, and
tested it on a desktop computer with a 2.53 GHz Intel Core
2 CPU and 4 GB RAM. The attack was run ten times on
each data set, and the average speed was recorded. Table
6 summarizes the speed of our attack on each scheme. On
average, it takes only seconds to attack a CAPTCHA in
any of these schemes. Besides, We also estimate an average
time for successfully breaking a CAPTCHA in each scheme:
on average, it takes 3 – 15 seconds. Clearly, our attack is
efficient and poses a realistic threat to all the hollow schemes.

Other Classifiers. We also tested other classifiers such
as Support Vector Machine, Back-Propagation Neural Net-
work and template matching. The CNN engine has achieved
the best overall performance for both attack speed and suc-
cess rate.

Our DFS algorithm is not optimal. We did not opti-
mize this algorithm for a simple reason: we measured the
time consumption for each step in our attack. It turns out
that ‘contour line removal’ and ‘clean-up’ take about 58% of
the time of the whole attack, but ‘segmentation and recog-
nition’ takes only about 13%.

7. DISCUSSIONS

7.1 Novelty
To our best knowledge, this is the first security analysis

on the state of the art of hollow CAPTCHAs. We used
some standard techniques in pre-processing, and also used
CFS, which has been a standard method for analyzing text
CAPTCHA robustness since its introduction in [23]. How-
ever, the key component of our attack, the graph search
algorithm based segmentation and recognition, is absolutely
novel. Overall, the combination of these and other tech-
niques has led to a novel attack.

State of the art attacks on the CCT based CAPTCHAs,
such as [7] and [8], do not work on the hollow CAPTCHAs
studied in this paper.

Among all the related work we have discussed earlier, the
attack reported in [9] on a MegaUpload CAPTCHA is the
only one that has a slight similarity to our attack. However,
that attack was designed for a single CAPTCHA; it is ad
hoc and not applicable to attacking hollow CAPTCHAs.
Moreover, that attack focused on segmentation, and did not
involve character recognition at all.

7.2 Generic Value
Our attack is applicable to a variety of hollow CAPTCHAs.

It works on schemes with thin contours (e.g. Yahoo!) and
on schemes with thick contours (e.g. Tencent); on schemes
with interference arcs (e.g CmPay) and on schemes without
such arcs (e.g. Yahoo!); on schemes with a fixed length (e.g.
Sina) and on schemes with a varied length (e.g. Yahoo!).
Table 7 summarizes the main features of these schemes. As
they represent different designs, each with distinctive fea-
tures, our attack is of some generic value.

7.3 Lessons
Our attack helps to identify which design features con-

tribute to a hollow CAPTCHA’s security, and which do not.
Design features that do help security include the following.

Overlapped or connected characters are still the
most crucial security feature, as by design it provides
(some) segmentation resistance. It significantly contributes
to the security of all the 5 schemes.

String length matters. This was first observed in [23]
and then confirmed in [7]. First, it is good to use a relatively
large length. The more characters used in a CAPTCHA im-
age, the more components remain after preprocessing, and
the larger the solution space will be. This will decrease an
attack’s success and speed. The more characters used, the
harder for brute-force guessing, too. Second, it is good to
use a varied length, which does not give away useful in-
formation to aid attackers. Attackers have to try multiple

1082

Table 7: Main features of five hollow CAPTCHAs

Scheme
Interference

Arcs
Broken

Contour Line
Contour Line
Thickness

Hollow Styles String Length
Character
Overlap

Alphabet
Size

Yahoo! No Sometimes Uniform Varied Varied (6-8) Yes 28
Tencent No No Varied Uniform Fixed (4) Yes 25
Sina No No Varied Uniform Fixed (4) Yes 28

CmPay Yes After binarization Varied Uniform Fixed (4) Yes 30
Baidu Yes No Varied Uniform Fixed (4) Yes 51

(a) (b)

Figure 13: Yahoo!’s hollow styles: (a)thick strokes
vs. (b)thin strokes (both after CFS).

possible lengths, which increases the search space for our
graph algorithm, and could decrease its success and speed.

Broken contours considerably increase the difficulty level
of designing and implementing an effective attack. In par-
ticular, they disable the otherwise powerful CFS. Broken
contours introduced by design or after binarization are both
good for security, but the former wins our recommendation
as it is probably easier to control by a CAPTCHA generator.

Thick interference arcs cut across characters, not just
dividing characters to fragments but also introducing noise
components. This considerably increases the difficulty level
of designing and implementing an effective attack.

Hollow styles. Varying thickness of hollow portions is an
important style feature that contributes to security. Some
hollow portions in the Yahoo! scheme were so thin that
their contour lines were squashed together, which prevents
the portions from being picked up by CFS. This not only
increases the number of strokes in an image, but also makes
it a challenge to cope with those squashed strokes.

In the Yahoo! scheme, another variation in hollow styles
is heavily used. Namely, two font types are used, creating
two styles: one we call the ‘thick strokes’, and the other the
‘thin strokes’ (see Figure 13). Until now, what is explicitly
discussed in this paper is the ‘thin strokes’. In the ‘thick
strokes’, character strokes can be completely picked up by
CFS, leading to not just fewer components than in the ‘thin
strokes’, but also a simplified treatment by the follow-up
attack procedures. That is, ‘thick strokes’ is a weaker design
than ‘thin strokes’ in terms of security. Note that our attack
is applicable to both types, and our program automatically
handles both the types.

Having multiple designs and deploying them alternately in
a random order is good for security, as first suggested in [26]
and then confirmed in [7]. However, randomly alternating
two hollow styles in the Yahoo! scheme is probably only
marginally useful for improving security, as the alternatives
are not equally strong.

Varying width of individual characters is a design
feature that is somehow related to hollow styles but beyond
that. It contributes to security for the following reasons.
The larger the width difference between the thinnest char-
acter and the fattest one, the larger a search space faces

our graph search algorithm, and the more likely it will give
inaccurate results.

Design features that do not help security include:
Complete contours, which help CFS to pick up charac-

ter strokes.
Contour thickness. Thinning [25] contour lines to a

uniform thickness is useful for our attack, but not essential.
Therefore, we do not consider variations in contour thickness
contributes much to security.

Thin interference arcs, which are easily removed by
binarization.

Fixed string length, which gives away useful informa-
tion to aid segmentation.

Short string length, which reduces an attack’s search
space and increase its chance of success.

This set of ‘Does’ and ‘Don’ts’ constitutes a set of design
guidelines for the security of hollow CAPTCHAs. It also
provides a method for comparing different designs, as well
as explaining and pinpointing why one scheme is better than
the other in terms of security.

For example, although broken, the Yahoo! scheme is ap-
parently the best among all the 5 schemes, and the following
features contribute to its unique strength: 1) Using a rela-
tively large string length, and the length is not fixed. 2)
Variations in hollow portions’ thickness. 3) Variations in
the width of individual characters width.

The second best is Baidu. Its unique strength lies in its
large alphabet set, which have 58 characters including digits
and upper- and lower-case letters. This is the largest alpha-
bet set among the five schemes. It significantly increases the
solution space for individual characters, and makes it harder
for the CNN engine to accurately recognize the characters.
In particular, with a limited number of training data, it is
unsurprising that the CNN engine will decrease our attack’s
success. On the other hand, interference arcs marginally
contribute to the security of this scheme, too.

To the contrary, Tencent is the worst design, as it made
the worst choices for almost all security features.

7.4 Towards Better Designs
Although broken, the Yahoo! scheme has some good se-

curity features. It is unwise to throw away its current design
and start from scratch. Instead, we explore how to evolve
this scheme into a better design. Plausible options include
the following.

Increasing the alphabet size, which is currently among the
smallest across the 5 schemes. This is a simple but effec-
tive solution, and with little negative impact on usability (if
confusing characters are excluded from the alphabet).

Using broken contours more often. In its current design,
not all of the Yahoo! challenges contain broken contours.
It is useful to make challenges with broken contours occur

1083

more often, since this will likely decrease our attack’s success
rate and increase the time it takes to succeed.

More fundamentally, introducing more broken points in
each challenge will likely significantly increase security. Break-
ing contour lines badly or at least creating a large number
of broken points at random locations will make it hard to
repair the contours. If the repair algorithm does not work,
attackers will be unable to rely on the otherwise effective
CFS method to extract character strokes any more.

Introducing thick interference arcs to cut through charac-
ters so that when adjacent strokes are combined for tests,
combined characters contain either extra strokes or lack es-
sential parts. This will confuse the CNN engine, leading to
incorrect recognition results. Also, cutting-through arcs can
be used to create a large number of components in an im-
age. The more components the CNN engine has to try to
combine, the lower the attack’s success rate and speed.

Increasing the length of each CAPTCHA string helps, too,
for the same reason as above.

Increasing the variation in character widths. The larger
the gap between the smallest and largest width of individual
characters in an image, the larger a solution set our graph
search algorithm is required to go through. This might sig-
nificantly slow down our attack.

Some of these measures (such as increasing the string
length) only have a linear effect on the search space, but
methods such as ‘using broken contours more often’ theo-
retically would be much more effective in thwarting attacks.

We note that careful studies are needed to establish how
well these advised measures will work, and more impor-
tantly, some measures may decrease recognition success for
humans. It is important to strike the right balance be-
tween security and usability. It remains an open problem
what design will be eventually both secure and usable, and
whether this design is mission impossible. Nonetheless, our
discussions offer practical suggestions for improving hollow
CAPTCHA designs.

8. SUMMARY AND CONCLUSION
We have shown that hollow CAPTCHAs, a new type of

text scheme, have serious security problems. With a simple
attack, we have broken the hollow schemes deployed by Ya-
hoo!, Tencent, Sina, CmPay and Baidu with a success rate
of 36%, 89%, 59%, 66%, and 51%, respectively. As these
schemes are different from each other, and each with dis-
tinctive design features, our work casts serious doubt on the
current generation of hollow CAPTCHAs.

Hollow CAPTCHA is a clever idea in that it improves us-
ability while keeping characters connected or touching each
other, but this idea has unexpected security consequences. A
key issue in text CAPTCHA design is to find a segmentation-
resistant mechanism that is secure and user-friendly simulta-
neously. The hollow CAPTCHA approach does not achieve
this goal yet.

By comparing representative designs of popular hollow
CAPTCHAs, we have identified good design features for
better security. We have also discussed how to create next
generation of better designs. However, it remains an open
problem how to design CAPTCHAs that are both secure
and usable, and this is our ongoing work. Overall, our work
contributes to advancing the current collective understand-
ing of CAPTCHA design.

9. ACKNOWLEDGEMENTS
We thank Lindsay Marshall, Feng Hao and anonymous

reviewers for helpful comments. Xidian authors are sup-
ported by the National Natural Science Foundation of China
(60903198) and the Fundamental Research Funds for the
Central Universities.

10. REFERENCES

[1] Baidu. https://passport.baidu.com/reg.

[2] China mobile. https://cmpay.10086.cn/.

[3] Pwntcha - captcha decoder web site.
http://sam.zoy.org/pwntcha/.

[4] Sina weibo. http://weibo.com/signup/signup.php.

[5] Tencent security center.
http://aq.qq.com/cn2/findpsw/findpsw_index.

[6] Yahoo! password helper.
https://edit.yahoo.com/forgot?stage=fe100&src=

&intl=us&done=http://www.yahoo.com&partner=reg.

[7] Elie Bursztein, Matthieu Martin, and John Mitchell.
Text-based captcha strengths and weaknesses. In
Proceedings of the 18th ACM conference on Computer
and communications security, pages 125–138. ACM,
2011.

[8] Ahmad S El Ahmad, Jeff Yan, and Mohamad Tayara.
The Robustness of Google CAPTCHAs. Computing
Science Technical Report CS-TR-1278, Newcastle
University, UK, 2011.

[9] Ahmad Salah El Ahmad, Jeff Yan, and Lindsay
Marshall. The robustness of a new captcha. In
Proceedings of the Third European Workshop on
System Security, pages 36–41. ACM, 2010.

[10] Jeffrey H Hoel. Some variations of lee’s algorithm.
Computers, IEEE Transactions on, 100(1):19–24,
1976.

[11] Yann LeCun, Léon Bottou, Yoshua Bengio, and
Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[12] Mark D Lillibridge, Martin Abadi, Krishna Bharat,
and Andrei Z Broder. Method for selectively
restricting access to computer systems, February 27
2001. US Patent 6,195,698.

[13] Greg Mori and Jitendra Malik. Recognizing objects in
adversarial clutter: Breaking a visual captcha. In
Computer Vision and Pattern Recognition, 2003.
Proceedings. 2003 IEEE Computer Society Conference
on, volume 1, pages I–134. IEEE, 2003.

[14] Gabriel Moy, Nathan Jones, Curt Harkless, and
Randall Potter. Distortion estimation techniques in
solving visual captchas. In Computer Vision and
Pattern Recognition, 2004. CVPR 2004. Proceedings
of the 2004 IEEE Computer Society Conference on,
volume 2, pages II–23. IEEE, 2004.

[15] Moni Naor. Verification of a human in the loop or
identification via the turing test. Unpublished draft
from http://www. wisdom. weizmann. ac. il/˜
naor/PAPERS/human abs. html, 1996.

[16] M. O’Neill. Cnn.
http://www.codeproject.com/Articles/16650/

Neural-Network-for-Recognition-of-Handwritten-Digi.

1084

[17] Nobuyuki Otsu. A threshold selection method from
gray-level histograms. Automatica, 11(285-296):23–27,
1975.

[18] Patrice Simard, David Steinkraus, and John C Platt.
Best practices for convolutional neural networks
applied to visual document analysis. In ICDAR,
volume 3, pages 958–962, 2003.

[19] PY Simard. Using machine learning to break visual
human interaction proofs (hips. Advances in neural
information processing systems, 17:265–272, 2005.

[20] Luis Von Ahn, Manuel Blum, and John Langford.
Telling humans and computers apart automatically.
Communications of the ACM, 47(2):56–60, 2004.

[21] Y Xu, G Reynaga, S Chiasson, JF Frahm, F Monrose,
and PC Van Oorschot. Security and usability
challenges of moving-object captchas: decoding
codewords in motion. In 21st USENIX Security
Symposium, 2012.

[22] Jeff Yan and Ahmad Salah El Ahmad. Breaking visual
captchas with naive pattern recognition algorithms. In
Computer Security Applications Conference, 2007.
ACSAC 2007. Twenty-Third Annual, pages 279–291.
IEEE, 2007.

[23] Jeff Yan and Ahmad Salah El Ahmad. A low-cost
attack on a microsoft captcha. In Proceedings of the
15th ACM conference on Computer and
communications security, pages 543–554. ACM, 2008.

[24] Jeff Yan and Ahmad Salah El Ahmad. Usability of
captchas or usability issues in captcha design. In
Proceedings of the 4th symposium on Usable privacy
and security, pages 44–52. ACM, 2008.

[25] TY Zhang and Ching Y. Suen. A fast parallel
algorithm for thinning digital patterns.
Communications of the ACM, 27(3):236–239, 1984.

[26] Bin B Zhu, Jeff Yan, Qiujie Li, Chao Yang, Jia Liu,
Ning Xu, Meng Yi, and Kaiwei Cai. Attacks and
design of image recognition captchas. In Proceedings of
the 17th ACM conference on Computer and
communications security, pages 187–200. ACM, 2010.

1085

