Do background images improve "Draw a Secret" graphical passwords?

Jeff Yan

School of Computing Science Newcastle University, UK (Joint work with **Paul Dunphy**)

Context

- □ Textual passwords
 - Cheap, convenient, ubiquitous
 - Have long suffered usability problems
 - □ Due to limitations of human memory
- ☐ Graphical passwords
 - A picture is worth a thousand words
 - Hot topic in both security and HCI communities
 - Bonder ('96), Passfaces, Inkblot, Passpoints, etc.
 - Collective understanding: still in its infancy

ACM CCS'07, Oct 30 (2)

"Draw a Secret" [Usenix'99]

- ☐ One representative scheme; one of the few supporting both
 - Authentication: to verify the claimed identify of a user, and
 - Key generation: to use a password to generate a long crypto key
- ☐ Theoretical password space: DAS > textual

"Draw a Secret"

- \square A password is a free-form drawing on a grid of size N \times N
 - Sample: encoded as (2, 2), (3,2), (3,3), (2,3), (2,2), (2,1), (5,5), (1,2), (1,3), (5,5)
 - Two secrets are the same if the encoding is the same;
- ☐ Determinants of password strength include
 - Stroke count (2)
 - Password length (8)
 - Grid size (4x4)

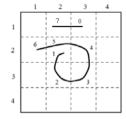


Figure 2: Input of a graphical password on a 4×4 grid. The drawing is mapped to a sequence of cordinate pairs by listing the cells in the order which the stylus passes through them, with a distinguished coordinate pair inserted in the sequence whenever the stylus is lifted from the drawing surface.

Problems with DAS

- ☐ Users tend to pick weak passwords that are vulnerable to *graphical dictionary attack* (Thorpe and van Oorschot [usenix'04])
 - Small stroke count,
 - Small password length,
 - Mirror symmetry
- ☐ Implication: this theoretically sound scheme is less secure in practice
 - 1-week recall (pilot): avg strength of memorable passwords < 41.9 bits (vs. 8-character text pwd: 53 bits)

ACM CCS'07, Oct 30 (5

Grid selection as a solution

- ☐ Thorpe and van Oorschot [acsac04]
- ☐ How it works:

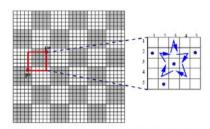
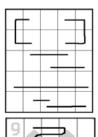
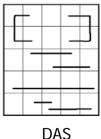



Figure 6. Grid selection: a user selects a drawing grid in which to draw their password.

- Adds up to 16 bits to the password space
- Unclear it works well as expected (no empirical study yet)

ACM CCS'07, Oct 30 (6)


Intuition behind our solution

- □ In DAS, difficult to reconstruct a complex secret
 - E.g. people were able to remember what their drawings looked like, but failed to replicate them in the correct location (Goldberg et al [CHI'02])
- ☐ The cells in the grid all look alike!
 - What if recreation of a secret can be aided by something that reduces the confusion, e.g. a background image?

Our novel proposal

- Background Draw a Secret (BDAS):
 - Instead of creating a secret on an empty grid, a user choose a background image to be overlaid by the grid, and then create a secret as in DAS

S BDAS

ACM CCS'07, Oct 30 (7) ACM CCS'07, Oct 30 (8)

Empirical evaluations

- Design
 - Paper/transparency prototype
 - Drawing grid
 - □ 5x5
 - ☐ Same size as a popular PDA
 - Comparative study
 - DAS: grid printed on transparency
 - BDAS: choose one out of 5 images to be overlaid with arid

- Procedure
 - 46 participants
 - 26: non-technical
 - 32 M, 14 F
 - Age: 18-25 (one 50+)
 - Briefing & randomly assigned a group
 - Practice
 - Password creation
 - 5-minute recall
 - 1-week recall

What background image to choose?

- □ Little guideline in literature
- □ have meaningful content and rich details (Wiedenbeck et al SOUPS'05)
 - Easy to select spots
- Intuition
 - Not introduce obvious bias

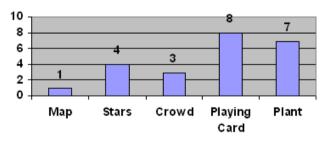
(10)

Everyday images

ACM CCS'07, Oct 30

ACM CCS'07, Oct 30

- □ Stars
- Map □ Plant
- ☐ Crowds
- Playing card
 - Lowdetail


Background images used

Results: background image choice

- ☐ Images dense with content (*map* and *crowd*) anticipated to be the most popular
 - This was clearly contradicted
 - Playing card: 33% of selections, plant: 30%

ACM CCS'07, Oct 30 (11) ACM CCS'07, Oct 30 (12)

Results: password quality

Complexity of secrets in each group

■ BDAS: larger stroke count (significantly different) and password length

■ BDAS: stronger by more than 10 bits

Group			Stro	okes		Password length				
	þ	Avg.	S.d.	Max	Min	Avg.	S.d.	Max	Min	
BDA	S	7.22	2.21	12	4	21.43	7.76	37	6	
DAS		5.30	2.44	10	1	18.26	9.19	42	6	

□ Symmetry: 43% (BDAS) vs 57% (DAS)

☐ Centering within the grid: 43% (BDAS) vs. 87% (DAS)

ACM CCS'07, Oct 30 (13)

Results: 1-week recall

□ Recall rate

ACM CCS'07, Oct 30

■ DAS = BDAS = 95% (20/21)

☐ Complexity of successfully recalled secrets:

Group	Strokes				Password length				
	Avg.	S.d.	Max	Min	Avg.	S.d.	Max	Min	
BDAS	7.1	2.16	12	4	20.9	7.71	37	6	
DAS	5	2.44	10	1	17.45	7.63	37	6	

(15)

BDAS: larger stroke count (significantly different) and password length

Avg strength: <60 bits (DAS); >70.2 bits (BDAS)

BDAS: less symmetry and centering

Results: 5-minute recall

□ Recall rate

■ DAS: 100% (23/23); BDAS: 96% (22/23) [Fig10(a)]

☐ Complexity of successfully recalled secrets:

Group	Strokes				Password length				
	Avg.	S.d	Max	Min	Avg.	S.d.	Max	Min	
BDAS	7.45	2.26	12	4	21.7	8.31	37	6	
DAS	5.30	2.44	10	1	18.26	9.19	42	6	

■ BDAS: larger stroke count (significantly different) and password length; avg strength: larger by more than 10 bits

■ BDAS: less symmetry and centering

ACM CCS'07, Oct 30 (14)

Summary

- ☐ A simple idea: introducing background images into DAS
- Nice results
 - Much stronger passwords; just as memorable as their much simpler DAS counterparts.
 - The most exciting bit: A simple idea significantly enhances both usability and security simultaneously
- Numerous possibilities for future study

ACM CCS'07, Oct 30 (16)

Ongoing and future work

- ☐ Larger scale of experiments with an actual implementation
 - DAS vs. BDAS
 - BDAS vs. textual passwords
- What will make good background images?
 - Effect of individual background image choices
- □ Shoulder surfing resistance
- ☐ Interference between multiple passwords
- ☐ Many more ...

Thank You!

Jeff.Yan@ncl.ac.uk

ACM CCS'07, Oct 30 (17)