
Breaking Visual CAPTCHAs with Naïve Pattern Recognition Algorithms

Jeff Yan, Ahmad Salah El Ahmad
School of Computing Science, Newcastle University, UK

{Jeff.Yan, Ahmad.Salah-El-Ahmad}@ncl.ac.uk

Abstract

Visual CAPTCHAs have been widely used across the
Internet to defend against undesirable or malicious bot
programs. In this paper, we document how we have
broken most such visual schemes provided at
Captchaservice.org, a publicly available web service for
CAPTCHA generation. These schemes were effectively
resistant to attacks conducted using a high-quality
Optical Character Recognition program, but were broken
with a near 100% success rate by our novel attacks. In
contrast to early work that relied on sophisticated
computer vision or machine learning algorithms, we used
simple pattern recognition algorithms but exploited fatal
design errors that we discovered in each scheme.
Surprisingly, our simple attacks can also break many
other schemes deployed on the Internet at the time of
writing: their design had similar errors. We also discuss
defence against our attacks and new insights on the
design of visual CAPTCHA schemes.

1 Introduction

CAPTCHA stands for “Completely Automated Public
Turing Test to Tell Computers and Humans Apart”, and a
CAPTCHA is a program that generates and grades tests
that most human can pass, but current computer programs
cannot pass [1]. Such tests are often called CAPTCHA
challenges, and they are based on a hard, open problem in
AI. At present, CAPTCHA is almost a standard security
mechanism for defending against undesirable and mali-
cious bot programs on the Internet, e.g., bots that could
sign up for thousands of accounts a minute with free
email service providers, bots that could send out thou-
sands of spam messages each minute, and bots that could
in one act post numerous comments in weblogs (“blogs”)
pointing both readers and search engines to irrelevant
sites.

To date, the most commonly used are various types of
visual CAPTCHAs, in which a challenge often appears as
an image of distorted text that the user must decipher.
These schemes typically make use of the difficulty of
recognising distorted text with state of the art computer
programs. Well-known visual CAPTCHAs include EZ-
Gimpy, Gimpy and Gimpy-r (see [1, 22]), all developed at
Carnegie Mellon University. Google and Microsoft also

developed their own visual CAPTCHAs for their web
email services. Many more schemes have been put into
practice, although they are less visible in the literature. In
recent years, there were some pioneering research efforts
exploring how to design visual CAPTCHAs properly, e.g.
[2, 4, 5, 7, 24]. However, it appears that this subject is still
an art, rather than a science.

Captchaservice.org is, to our knowledge, the first web
service that is designed for the sole purpose of generating
CAPTCHA challenges. It supports multiple visual and
non-visual CAPTCHA schemes, and it is publicly avail-
able at [16]. Using the API provided by this service, peo-
ple can obtain a chosen type of CAPTCHA challenge
generated on the fly to protect their blogs from comment
spam attacks, or to defend against other type of bots. The
design of this web service and the CAPTCHA schemes it
supports were discussed and analysed in a recent peer-
reviewed paper [8]. In the present paper, we document
how, using novel attacks, we have broken most visual
CAPTCHA schemes provided by captchaservice.org.
These CAPTCHAs were effectively resistant to Optical
Character Recognition (OCR) software attacks, and thus
appeared to be secure. However, our attacks could
achieve a success rate of near 100% for each of these
schemes, and each challenge could be broken essentially
instantly. As a result, an adversary could easily bypass all
the defence provided by these schemes in real time.

Breaking CAPTCHAs1 is not new. For example, Mori
and Malik [10] have broken the EZ-Gimpy (92% success)
and the Gimpy (33% success) CAPTCHAs with sophisti-
cated object recognition algorithms. Moy et al [11] devel-
oped distortion estimation techniques to break EZ-Gimpy
with a success rate of 99% and 4-letter Gimpy-r with a
success rate of 78%. In contrast to such earlier work that
relied on sophisticated computer vision algorithms, our
attacks used naïve pattern recognition algorithms but ex-

1 The term of “Breaking CAPTCHA” is ambiguous. For example,
when CAPTCHA is interpreted as a simple challenge-response
protocol, “breaking CAPTCHA” can mean breaking the protocol,
e.g. via a man-in-the middle or an oracle attack. In this paper,
“breaking CAPTCHA” means to write a computer program that
automatically solves CAPTCHA challenges – ideally, this task
should be as hard as solving the underlying AI problem. (“Breaking
CAPCHA”, “breaking a CAPTCHA protocol”, and “Defeating
CAPTCHA based bot defence” are three different but related
notions, as clarified in [15].)

23rd Annual Computer Security Applications Conference

1063-9527/07 $25.00 © 2007 IEEE
DOI 10.1109/ACSAC.2007.47

279

23rd Annual Computer Security Applications Conference

1063-9527/07 $25.00 © 2007 IEEE
DOI 10.1109/ACSAC.2007.47

279

ploited fatal design errors in each of the schemes that we
have broken. Compared with the vision researchers who
aimed to advance research in AI by breaking
CAPTCHAs, we as computer security specialists aimed to
understand how a CAPTCHA could fail as a security sys-
tem and what we could learn from these failures.

The main contributions of this paper are the following.
First, we have identified fatal flaws in the design of four
visual CAPTCHA schemes from captchaservice.org, and
shown that all these schemes can be broken with a high
success rate. We have also found that these flaws are also
present in many other CAPTCHA schemes deployed on
the Internet, also making them vulnerable to our attacks.
We informed CERT of our results several months ago so
that the developers of the schemes were given ample
opportunity to improve their CAPTCHA security by
fixing these flaws. Second, our work reveals that the
security of CAPTCHAs is much poorer in real life than it
might have appeared to be. Many schemes deployed for
everyday use on the Internet at the time of writing were
very weak, and they could be easily broken without the
need to invent a sophisticated algorithm. Moreover, we
also discuss lessons we have learnt from breaking these
schemes and how to defend against our attacks – all this
contributes to understanding how to design better visual
CAPTCHA schemes in general. Our work reiterates the
necessity of independent security evaluations before a
system is considered secure. Without such evaluation, a
system might result in providing a false sense of security.
This also raises the following important questions: How
do we turn the design of CAPTCHAs from an art to a
science, and in particular, how do we rigorously evaluate
the robustness (and other properties) of a CAPTCHA
scheme?

The rest of this paper is organised as follows. Section
2 discusses related work. Section 3 reviews the schemes
we have broken, and evaluates their strength with a high
quality OCR program. Sections 4-6 present our attacks on
each scheme respectively. Section 7 measures the speed
of our attacks. Section 8 mentions other schemes that are
vulnerable to our attacks, and discusses both lessons we
have learnt, and defences to our attacks. Section 9 gives
concluding remarks.

2 Related Work

Chellapilla and Simard [7] attempted to break a num-
ber of visual CAPTCHAs taken from the web (including
those used in Yahoo and Google/Gmail) with machine
learning algorithms. However, their success rates were
low, ranging from merely 4.89% to 66.2%. No empirical
data for attack speed were reported, and therefore it is
unclear whether their attacks could break these schemes
in real time. An attack on an unnamed simple CAPTCHA
scheme with neural networks was discussed at [6], and it
achieved a success rate of around 66%.

PWNtcha [9] is an excellent web page that aims to
“demonstrate the inefficiency of many captcha implemen-
tations”. It comments briefly on the weaknesses of a
dozen visual CAPTCHAs. These schemes were claimed
to be broken with a success rate ranging from 49% to
100%. However, no technical detail was publicly avail-
able (and probably as a consequence, at a prominent place
of this web page, a disclaimer was included that it was not
“a hoax, a fraud or a troll”). More distantly related (in
spirit) is work by Naccache and Whelan [12] on decrypt-
ing words that were blotted out in declassified US intelli-
gence documents, although it was not about CAPTCHAs
as such.

The limitations of defending against bots with
CAPTCHAs (including protocol-level attacks) were dis-
cussed in [15]. A recent survey on CAPTCHAs research
can be found in [14].

3 Targeted CAPTCHA schemes

Captchaservice.org supports the following four visual
schemes:

word_image: In this scheme, a challenge is a dis-
torted image of a six-letter word.
random_letters_image: A challenge is imple-
mented as a distorted image of a random six-letter
sequence.
user_string_image: A challenge is a distorted im-
age of a user-supplied string of at most 15 charac-
ters.
number_puzzle_text_image: This is a multi-modal
scheme, which includes a distorted image of a
random number, as well as a textual description of
a puzzle involving the number. A user can solve
such a challenge either by recognising the number
in the image, or by solving the textual puzzle. The
advantage of such a multimodal scheme is mainly
to improve its usability and accessibility. In this
paper, we are interested in its visual mode only.

Fig 1. Sample challenges for four visual CAPTCHAs
available at Captchaservice.org (clockwise: word_image,

random_letters_image, user_string_image, num-
ber_puzzle_text_image)

All these schemes use a random_shear distortion
technique, which [8] describes, thus: “the initial image of
text is distorted by randomly shearing it both vertically
and horizontally. That is, the pixels in each column of the

280280

image are translated up or down by an amount that varies
randomly yet smoothly from one column to the next.
Then the same kind of translation is applied to each row
of pixels (with a smaller amount of translation on aver-
age).” Fig 1 shows sample challenges from the above
schemes. The word_image scheme also supports an addi-
tional distortion technique, but it is beyond the scope of
this paper.

To benchmark how resistant they were to OCR soft-
ware attacks, we tested all except the third scheme with
ABBYY FineReader V.8 [17], a commercial OCR prod-
uct. We chose this program for two reasons: 1) as an
award-winning product, it is considered one of the best in
the market, and 2) we happen to have access to the soft-
ware. We did not test the user_string_image scheme,
since other than that a user could specify the text string, it
seemed that nothing else was different from the first or
second scheme.

Number of challenges

Partially recog-
nised

(no. of characters)

CAPTCHA
Scheme All

characters
Recognised

5 4 3 2 1

Zero
characters
Recognised

Word_image 0 0 3 6 8 16 67

Random_letters
_image

0 0 2 4 8 20 66

Number_puzzle
_text_image

10 13 77

Table 1. Test results of resistance to OCR software
automatic recognition attacks.

We collected 100 random samples from [16] for each
scheme to be tested, and performed the following two
attacks on them: 1) we fed each sample into the OCR
software for an automated recognition, and 2) we manu-
ally segmented each sample, and then let the software
recognise individual characters. The test results are as
follows (Table 1 summarises the results of Attack 1).

Word_image. In Attack 1, none of the samples was
completely recognised. For 67 challenges, none of the
characters were recognised, whereas the remaining 33
challenges were partially recognised between 1 and 4
characters. Fig 2 (a) gives snapshots of a partially recog-
nised challenge (“REMOTE” recognised as “R£MO^”)
and a completely failed one (“FRISKY” recognised as
“tmsi”). In Attack 2, 38% (128 out of 600) letters were
recognised; however, only one sample had all its 6 letters
recognised and another had five of its letters recognised.
This is not surprising, since the individual recognition rate
theoretically implies a mere success rate of 0.3% (.38^6)
for breaking this scheme.

Random_letters_image. In Attack 1, no sample was
completely recognised. 66 challenges had none of their
characters recognised, but the remaining 34 challenges
were partially recognised between 1 and 4 characters. Fig

2(b) gives snapshots of a partially recognised challenge
and a completely unrecognised one. In Attack 2, 41%
(248 out of 600) letters were recognised. In theory, this
implies a success rate of about 0.5% (.41^6) for breaking
this scheme. In our experiment, 2% (2 out of 100) sam-
ples had all its 6 letters recognised.

Number_puzzle_text_image. In Attack 1, 10 samples
were completely recognised, 13 partially recovered and
77 challenges having none of their characters successfully
recognised. A close look at this set of samples showed:
they had a varying length, consisting of 1-7 digits (on
average 2.9 digits per challenge). So we did not pinpoint
how many characters were recovered for those partially
recognised samples. We also found that all those com-
pletely recovered challenges contained a single digit only,
like the first sample in Fig 2(c). While the OCR program
recovered such simple challenges, it completely failed to
recognise any of more complex ones, such as the other
sample in Fig 2(c). In Attack 2, 16% (46 out of 286) char-
acters were successfully recognised. However, only 11
samples were completely recognised, 30 partially recov-
ered and 59 challenges having none of their characters
successfully recognised.

Therefore, it appears that the random_shear distor-
tion provides reasonable resistance to OCR software
attacks, and the distortion implemented in the
word_image scheme is as good as in the ran-
dom_letters_image scheme. We also observed that the
OCR program we used in general had difficulty in differ-
entiating between characters ‘H’ and ‘N’, ‘I’ and ‘T’, ‘L’
and ‘V’, and ‘M’ and ‘W’ in the samples we presented.

(a)

 (b)

 (c)

Fig 2. Snapshots of the results of OCR Attack 1. (a) Two
word_image samples. (b) Two random_letters_image samples.

(c) Two number_puzzle_text_image samples.

4 Breaking Scheme 1

Although the visual CAPTCHA schemes discussed in
the previous section appeared to be secure, we took up the
challenge of breaking them. In this and following sec-
tions, we report the details of defeating the word_image,
random_letters_image, number_puzzle_text_image and
user_string_image schemes, which are labelled as
Scheme 1, 2, 3 and 4, respectively.

281281

In Scheme 1, each challenge was implemented as a
distorted image of a six-letter English word, which was
randomly chosen from a fixed set of 6,000 words [8].
More sample challenges (taken from [16]) are shown in
Fig 3. We have broken this scheme with a basic attack
algorithm and a number of refinements.

Fig 3. Scheme 1 CAPTCHA sample challenges (Each im-
age is of 178 × 83 pixels, PNG format).

4.1 Basic attack algorithms

With the aid of [8] and documentation available at
[16], we studied a sample set of 100 random word_image
CAPTCHA challenges which we collected, and estab-
lished the following empirical observations.

Only two colours were used in each challenge,
one for background and another for foreground
which was the distorted challenge text; the choice
of colours was either random or specified by the
user. Therefore, it is easy to separate the text from
the background.

Letter Pixel Count Letter Pixel Count

A 183 N 239
B 217 O 178
C 159 P 162
D 192 Q 229
E 163 R 208
F 133 S 194
G 190 T 175
H 186 U 164
I 121 V 162
J 111 W 234
K 178 X 181
L 111 Y 153
M 233 Z 193

 Table 2. A letter–pixel count lookup table for letters A-
Z. (Note: ‘J’ and ‘L’ have the same pixel count. So are ‘K’

and ‘O’, and ‘P’ and ‘V’.)

Only capital letters were used. Although a letter
might be distorted into a different shape each
time, it consisted of a constant number of fore-
ground pixels in a challenge image. That is, a let-
ter had a constant pixel count. We worked out the
pixel count for each of the letters A to Z (see Ta-
ble 2). As plotted in Fig 4, most letters had a dis-
tinct pixel count.

Few letters overlapped or touched with each other
in a challenge, so many challenges were vulner-
able to a vertical segmentation attack: the image
could be vertically divided by a program into
segments each containing a single character.

 Our basic attack algorithm is largely based on the
above observations. One of its key components is a verti-
cal segmentation algorithm, which works as follows.
1. Obtaining the top-left pixel’s colour value, which

defines the background colour of an image. Any pixel
of a different colour value in this image is in fore-
ground, i.e. part of the distorted text.

2. Identifying the first segmentation line. We map the
image into a coordinate system, in which the top-left
pixel has coordinates (0, 0), the top-right pixel (image
width, 0) and the bottom-left pixel (0, image height).
Starting from point (0, 0), a vertical “slicing” process
traverse pixels from top to bottom and then from left
to right. This process stops once a pixel with a non-
background colour is detected. The X co-ordinate of
this pixel, x1, defines the first vertical segmentation
line X = x1 -1.

A

B

C

D

E

F

G H

I
J

K

L

MN

O
P

Q
R

S
T

UV

W

X

Y

Z

0

50

100

150

200

250

300

Letter

P
ix

el
 c

ou
nt

Fig 4. Letters A-Z and their pixel counts.

3. Vertical slicing continues from (x1+1, 0), until it de-
tects another vertical line that does not contain any
foreground pixels – this is the next segmentation line.

4. Vertical slicing continues from a pixel to the right of
the previous segmentation line. However, the next
vertical line that does not contain any foreground
pixel is not necessarily the next segmentation line. It
could be a redundant segmentation line, which would
be ignored by our algorithm. Therefore, only when
the vertical slicing process cuts through the next let-
ter, the next vertical line that does not contain any
foreground pixels is the next segmentation line.

282282

5. Step 4 repeats until the algorithm determines the last
segmentation line (after which, the vertical slicing
will not find any foreground pixels).

Once a challenge image is vertically segmented, our
attack program simply counts the number of foreground
pixels in each segment. Then, the pixel count obtained is
used to look up Table 2, telling the letter in each segment.

Fig 5 shows how our basic attack has broken a chal-
lenge. First, the vertical segmentation divided the chal-
lenge into 6 segments. Second, each segment was scanned
to get the number of foreground pixels in it. Then, the
pixel count obtained in the previous step was used to look
up the mapping table, recognising a character Ci for each
segment Si (i=1, …, 6). Finally, the string ‘C1 C2 C3 C4 C5

C6’ gives the result.

Fig 5. The basic attack: an example.

By combining the vertical segmentation and a lookup
table, we achieved on the sample set a success rate of
36%, that is, 36 out of 100 challenges were completely
broken.

4.2 Enhancement 1: dictionary attack

Our basic algorithm would fail to break some chal-
lenges completely. Fig 6 gives a failing example, where
the vertical segmentation method could not separate let-
ters ‘S’ and ‘K’ because the vertical slicing line could not
split the two letters without touching both of them. Our
basic attack could not do anything more than to give a
partially recognised result “FRI**Y” (we use ‘*’ to repre-
sent one unrecognised character). However, since Scheme
1 challenges all used words, our basic attack was en-
hanced by the following “dictionary attack”.

A dictionary of about 6,000 six-letter English words
was introduced. Since the dictionary used in Scheme 1
was not available, as a starting point we compiled our
dictionary using a free wordlist collection [13] that is of-
ten used with password crackers.

Fig 6. The basic attack: a failing example. (The partial
line between ‘S’ and ‘K’ is for illustration only, and it did

not exist in a segmented result.)

Any partial result returned by the basic algorithm was
used as a string pattern to identify candidate words in the
dictionary that match the pattern. Since there could be
multiple candidate words, a simple solution was intro-
duced to find the best possible result as follows. For each
dictionary entry, we pre-computed (using Table 2) a pixel
sum, which is the total number of pixels this word could
have when it was embedded in a CAPTCHA challenge.
This pixel sum was stored along with the word in the dic-
tionary. We also worked out, on the fly, a pixel sum for
the unbroken challenge, which is the total number of all
foreground pixels in the challenge. The first candidate
word with the same pixel sum as the challenge was re-
turned as the final recognition result.

Fig 7. The basic attack: two enhancements.

Fig 7 illustrates how the enhanced algorithm worked.
In this case, the partial result ‘FRI**Y’ obtained by the
basic algorithm was used to identify all words that start
with ‘FRI’ and end with ‘Y’ in the dictionary. Five candi-
date words were found: ‘FRIARY’, ‘FRILLY’,
‘FRISKY’, ‘FRIZZY’ and ‘FRIDAY’. However,
‘FRISKY’ was returned as the best possible result, since it
was the only candidate having a pre-computed pixel sum
of 987, which equals to the pixel sum of the unbroken
challenge (133+208+121+372+153=987).

283283

To make the dictionary attack work properly, it is cru-
cial to create a correct string pattern after the vertical
segmentation process. For example, when the vertical
segmentation divided an image into only four segments
and the corresponding partial result was in the following
form: ‘B B ’, it was important to determine how many
unrecognised letters were in each box ‘ ’. Otherwise,
‘B*B***’, ‘B**B**’ or ‘B***B*’ would give totally dif-
ferent recognition results. If all these patterns were used
to look up the dictionary, it would be likely to find many
candidates with an identical pixel sum.

This is a problem of indexing letters in their correct
positions, and it was addressed using the following two-
step method.

1) For some cases, it was trivial to work out a string
pattern with contextual information. For instance, if a
segmented image contained only one unrecognised seg-
ment, e.g. the example in Fig 7, the number of unrecog-
nised characters in the segment was six minus the number
of all recognised characters. Another straightforward case
was when no character was recognised in an image – then
the number of unrecognised segments in the image did
not really matter. For example, an image segmented into
three unrecognised segments ‘ ’ would be no differ-
ent to one for which the vertical segmentation completely
failed.

2) When the above method did not work, e.g. in the
case of ‘B B ’, we relied on the number of pixels in
each unrecognised segment in order to deduce how many
characters the segment contained. For example, when the
number of pixels in a segment was larger than 239 (the
largest pixel count in Table 2, i.e., ‘N’) but smaller than
2×239, it was likely that this segment had two unrecog-
nised letters. There were exceptions that could not be
handled this way. Although the average pixel count for
letters A-Z was 178.80, ‘J’, ‘L’ and ‘I’ had a pixel count
much smaller than the average. For example, the pixel
sum of ‘ILL’ or ‘LIL’ was only 343; the pixel sum of ‘LI’
or ‘IL’ was a mere 232. We used an exception list to han-
dle such cases. On the other hand, the combination of
‘LLL’, ‘JK’ and ‘KJ’ never or rarely occurs in English
words. Due to the paper space limit, more details of this
method are skipped.

An alternative way of doing the pixel sum matching
was to use unrecognised segment(s) only. In this way, no
pixel sum would be stored in the dictionary, but more
computation would have to be done on the fly.

It is also worth noting that when none of the letters in
a challenge could be recognised by the basic algorithm,
the pixel sum matching method in the dictionary attack
could serve as the last resort.

4.3 Further enhancements

The following enhancements were developed to han-
dle typical “troublemakers” that could not be broken by
the above techniques.

Letters with an identical pixel count. Letters having
an identical pixel count could confuse our basic algo-
rithm. For example, the challenge in Fig 8 (a) was suc-
cessfully segmented into 6 parts, but it was initially rec-
ognised as “OELLEY”, leading to an incorrect result.
Since ‘O’ and ‘K’ have the same pixel count, our basic
algorithm had only a 50% of chance for breaking this
challenge.

To overcome this problem, we relied on the following
“spelling check”: if a challenge includes a letter with a
pixel count of 111 (‘J’ or ‘L’), 178 (‘K’ or ‘O’), or 162
(‘P’ or ‘V’), each we generate variant, and then carry out
multiple dictionary lookups to rule out candidate strings
that are not proper words. For example, in the above case,
both ‘OELLEY’ and ‘KELLEY’ were looked up in the
dictionary. Since only “KELLEY” was in the dictionary,
it was returned as the best possible result.

This “spelling check” technique was also used to en-
hance the string pattern matching in the dictionary attack.
For example, if a partial result recognised by the basic
algorithm was “V*B*IC”, then both “V*B*IC” and
“P*B*IC” would be valid matching patterns for identify-
ing candidate words in the dictionary.

 (a) (b)

(c)

Fig 8. Typical troublemakers: a) Letters with an identical
pixel count; b) Broken letters; c) Letters with additional or

less pixels.

Broken characters. A few challenges contained bro-
ken letters that misled the segmentation algorithm. As
shown in Fig 8 b), due to a break in ‘H’, the letter was
segmented into two parts instead of one.

To overcome this problem, we introduced a two-step
method as follows. First, once the vertical segmentation
was done, our algorithm tested whether a segment was
complete: if the number of foreground pixels in a segment
was smaller than 111, the smallest pixel count in Table 2,
then this segment was incomplete; if the number of fore-
ground pixels in a segment was larger than 111 but
smaller than 239 (the largest pixel count in Table 2, i.e.,

Additional pixel

284284

‘N’) and this number could not be found in the lookup
table, then this segment is incomplete. Second, an incom-
plete segment would be merged with its neighbouring
segment(s). A proper merging of segment was one for
which the combined pixel count could lead to a meaning-
ful recognition result, e.g. the combined count was equal
to or less than 239, and it could be found in the lookup
table. When multiple proper combinations existed (e.g. S3

can be combined either with S2 or with S4), spelling check
could serve as the last resort to find the best possible re-
sult.

Additional pixel(s). In a few cases, a letter might con-
tain additional pixel(s) against its pixel count in the
lookup table. For example, an additional pixel occurred
above ‘A’ in Fig 8 c). To address this problem, we relied
on an approximate table lookup: when a pixel count for a
segment could not be located in the lookup table, this
segment would be recognised as the most likely letter.

This method does not succeed all the time, since some
letters have close pixel counts (e.g., V, E and U; D, Z and
S; M and W). However, sometimes, we could resort to the
spelling check technique to find the correct result. For
example, when multiple candidate answers were returned
by the approximate method, spelling check could be used
to choose the best possible solution.

4.4 Results

With all the above enhancements, our attack achieved
a success rate of 92% on the sample set. To check
whether our attack was generic enough, we followed the
practice described in [10, 11]. We collected another set of
100 random challenges, and then run our attacks on this
test set. Our attack completely broke 94 challenges in the
test set. That is, a success rate of 94%. On the contrary,
without image analysis, an attack program with access to
the dictionary used in Scheme 1 has merely a 1/6000
chance of guessing correctly.

We did not analyse any challenges in the test set, and
no additional modifications were made to our program.
One arguable convenience we took advantage of is that
we made sure our dictionary covered all words used in the
test set. This could be avoided by using a large dictionary,
although it would decrease the attack speed. However, as
a security requirement, a CAPTCHA by definition should
make its code and data publicly available [1], rather than
relying on “security through obscurity”.

Most failure cases in both the sample and the test sets
were due to the same reason: the failure of vertical seg-
mentation led to partial results such as ‘S*****’ and
‘******’, which matched too many candidate words that
had the same pixel sum in the dictionary. The unique ex-
ception, which was in the test set, was a failure of the
spelling check to differentiate between ‘P’ and ‘V’: two
alternatives were both in the dictionary.

5 Breaking Scheme 2

In Scheme 2 (random_letters_image), each challenge
is a distorted image of a random six-letter sequence,
rather than an English word. However, the challenge im-
ages in Schemes 1 and 2 share many common characteris-
tics, such as:

Each image is of the same dimension: 178 × 83
pixels. Only two colours are used in the image,
one for background and another for foreground
which is the distorted challenge text.
Only capital letters are used. Few letters overlap
or touch with each other.
Each letter has an (almost) constant pixel count.
The one-to-one mapping from a pixel count to a
letter in Table 2 is still valid.

The basic attack algorithm in the previous section was
also applicable to Scheme 2, and it has broken 28 out of
100 random Scheme 2 challenges we collected. However,
the dictionary attack did not work here. It is possible (but
expensive) to build a dictionary of 6-random-letter strings
(26^6 =308,915,776 dictionary entries). However, the
pixel sum matching would often return multiple candi-
dates. Moreover, the spelling check technique was no
longer applicable to differentiate letters with an identical
pixel count.

To boost the success rate, we have developed a new
method, largely based on the following new ideas: a
“snake” segmentation algorithm, which replaced the ver-
tical segmentation since it could do a better job of divid-
ing an image into individual letter components, and 2)
some simple geometric analysis algorithms that differen-
tiated letters with the same pixel count.

5.1 Snake segmentation

Our snake segmentation method was inspired by the
popular “snake” game, which is supported in most mobile
phones. In this game, a player moves a growing snake on
the screen, and tries to avoid collisions between the snake
and dynamic blocks. In our algorithm, a snake is a line
that separates the letters in an image. It starts at the top
line of the image and ends at the bottom. The snake can
move in four directions: Up, Right, Left and Down, and it
can touch foreground pixels of the image but never cuts
through them. Often, a snake can properly segment a chal-
lenge that the vertical segmentation fails to do.

The first step of the snake segmentation was to pre-
process an image to obtain the first and last segmentation
lines, as illustrated in Fig 9 (a). The first segmentation
line (X= xfirst) was obtained as in the vertical segmentation
algorithm, and then the vertical slicing started at point
(width, 0), moving leftwards to locate the last segmenta-
tion line (X= xlast).

285285

The top and bottom edges of the image between these
two segmentation lines were starting and ending lines for
a snake. Since each letter occupies some width, we chose
to refine the starting line by shifting 10 pixels to each
segmentation lines. That is, for snakes, all possible start-
ing points are between (xfirst+10, 0) and (xlast - 10, 0).

(a) (b) (c)

Fig 9. Snake segmentation. (a) Pre-processing: finding the first
and last segmentation lines. b) Before segment finalizing. (c) Af-

ter segment finalizing.

Next, the snake segmentation was started to divide the
pre-processed image into segments. The following heuris-
tics control the movement of a snake:

1. Whenever feasible, a snake moves down verti-
cally as much as possible. That is, Down is the di-
rection that has the highest priority.

2. A snake moves down from its starting point until
it is immediately above a foreground pixel.

3. When a snake can move Left and Up only, it
moves left one pixel. And then moves down as
much as possible.

4. When a snake can move Right and Up only, it
moves right one pixel. And then moves down as
much as possible.

5. When a snake can move right and left only, it
goes right. (Priority order: D > R > L > U)

6. When a snake moves left, it cannot go to any
point that is to the left of a previously completed
segmentation line.

7. A vertical slicing line could be a legitimate seg-
mentation line.

8. Distance control: when a snake reaches the bot-
tom line, it is done.

9. If a snake cannot reach the bottom, it is aborted
and all its trace is deleted.

10. No matter whether or not the previous snake suc-
ceeded in reaching the bottom, the next snake
starts one pixel to the right of the previous starting
point.

There could be multiple snakes between two seg-
ments, see Fig 9(b), where for example the red block be-
tween ‘K’ and ‘S’ were in fact a set of snake lines that
touched each other. Therefore, the last step was to finalise
the segments. This process dealt with the following tasks:
1) getting rid of redundant snakes: if there was no fore-
ground pixel in a segment, then this was an empty seg-
ment and one of its segmentation lines was redundant;
and 2) when necessary, handling broken characters by
merging neighbouring segments using the method dis-

cussed in the previous section. Fig 9(c) shows the final-
ised segments of a challenge, one for which vertical seg-
mentation would fail to segment overlapping letters T, J
and K.

5.2 Simple geometric analysis

To enhance the snake segmentation approach, we de-
signed simple algorithms to tell apart letters with an iden-
tical pixel count by analyzing their geometric layouts.

Differentiating between ‘P’ and ‘V’. When a seg-
ment had a pixel count of 162, it could be either ‘P’ or
‘V’. To determine which letter it was, this segment would
be first normalised: its left segmentation line would be
adjusted to cross its left-most foreground pixel vertically
and similarly for the right segmentation line. Then, a ver-
tical line would be drawn in the middle of the normalised
segment. If this middle line cut through the foreground
text only once, this segment would be recognised as ‘V’;
otherwise, it was recognised as ‘P’ (see Fig 10). It was
unlikely for the middle line to cut through ‘V’ twice,
since it was rare to use a rotated ‘V’ in a challenge pre-
sumably due to a usability concern: it would be very diffi-
cult for people to differentiate a rotated ‘V’ from a dis-
torted ‘L’ or ‘J’.

(a) (b) (c)

Fig 10. Recognising ‘P’ and ‘V’. (a) A segmented chal-
lenge. (b) The 1st segment was normalised and successfully
recognised as ‘P’. (c) The 6th segment was normalised and

successfully recognised as ‘V’.

This method would not work when a ‘P’ or ‘V’ hap-
pened to have a crack in the middle of its normalised
segment. However, it is trivial to address this exception:
the middle line could be shifted horizontally a number of
times, and each time the number of intersections it cut
through the foreground would be checked. If two or more
intersections occurred more often, then we are sure this
segment was ‘P’; otherwise it was ‘V’.

Telling ‘O’ and ‘K’ apart. When a segment had a
pixel count of 178, it could be either ‘K’ or ‘O’. To de-
termine which letter it was, a vertical line would be drawn
in the middle of the segment. If this line cut through the
foreground text only once, this segment would be recog-
nised as ‘K’. If this cut-through line had two intersections
with the foreground, the letter could be either ‘O’ or ‘K’.
However, we observed that the distance between two in-
tersections, denoted by d, was larger for ‘O’ than for ‘K’.
In our algorithm, if this distance was larger than 14 pixels
(an empirical threshold), the letter was recognised as ‘O’;
else, it was recognised as ‘K’. Fig 11 shows a segment

286286

that was normalised and then successfully recognised as
‘O’ in this way.

Fig11. A normalised segment was successfully recog-
nised as ‘O’.

However, this method is not perfect. For example, if
there was a break in letter ‘O’ and this break was exactly
in the middle of the normalised segment, then the cut-
through line would only cross the foreground once. Thus,
this letter would be wrongly recognised as ‘K’. However,
this kind of failure was rare in our experiment.

Differentiating between ‘L’ and ‘J’. To tell whether
a segment is ‘L’ or ‘J’, the segment was first normalised.
A horizontal line would then start to slice the segment
horizontally from top to bottom, until it intersected the
foreground text. If the intersection was closer to the left
segmentation line, then the segment was recognised as
‘L’; if the intersection was closer to the right segmenta-
tion line, then the segment was recognised as ‘J’ (see Fig
12). If the intersection was exactly in the middle, it was
guessed by default as ‘L’. Since this kind of scenario was
rare, we did not introduce any more sophisticated meth-
ods.

(a) (b) (c)

Fig 12. Recognising ‘L’ and ‘J’. (a) A segmented chal-
lenge. (b) The 2nd segment was normalised and successfully
recognised as ‘L’. (c) The 5th segment was normalised and

successfully recognised as ‘J’.

We do not claim that the above algorithms are generic,
but they turned out to be effective in our attacks. In fact,
geometric characteristics between ‘P’ and ‘V’, ‘O’ and
‘K’, and ‘L’ and ‘J’ vary so much that , when necessary, it
is almost always possible to develop more sophisticated
geometric analysis algorithms to differentiate them.

5.3 Results

Our attack program implemented the snake segmenta-
tion algorithm, geometric analysis, and the enhancements
discussed in the previous section such as approximate
table lookup, and the countermeasure for dealing with
broken characters (but not the spelling check, which of
course cannot help). The program achieved a success rate
of 96% on the sample set. Another set of 100 random
challenges was collected as a test set, and we achieved a
success rate of 99% on this set.

There was no completely unrecognised challenge in all
five failure cases. At least four or five characters were
correctly recovered in each case. Failure cases were
mainly due to one of two reasons: 1) failure in merging
broken letters (i.e. a segment could be combined with
either its preceding or following neighbour), and 2) failure
of the snake segmentation to segment connected letters.
Below is a failure case caused by the second reason,
where ‘WW’ could not be split. We used pixel sum
matching to guess non-segmented letters, but this does not
always succeed. In this case, ‘QN’ was returned as the
result for the last segment, since it was one of the combi-
nations that had the same pixel sum as ‘WW’.

Original Segmented Recognised

 YKLWQN

When snake segmentation was applied to Scheme 1
challenges, the results were also positive. The success rate
on the sample set was boosted to 99% (without using a
dictionary). The only failing case was the following.

Original Segmented Recognised

WORSEL

An additional pixel above 'M' caused this letter to be rec-
ognised as 'W' by the approximation table lookup method,
as 'W' was larger than 'M' just by one in terms of pixel
count. When a dictionary was used for the spelling check
in the last step, the success rate was increased to 100%.
On the other hand, the success rate on the test set was also
100% (without using a dictionary).

6 Attacks on Schemes 3 & 4

In Scheme 3 (number_puzzle_text_image), a challenge
is a distorted image of a random number. By analysing
100 samples we collected, we made the following obser-
vations of the characteristics of Scheme 3.

As with the previous two schemes, only two col-
ours were used in each challenge, one for back-
ground and another for foreground, i.e., the dis-
torted challenge text.
Each challenge used only numbers, which con-
sisted of 1~7 digits. The average number of digits
per challenge was 2.9.
The height of each challenge image was fixed, but
its width increased proportionally to the number
of digits used.

d > 14 pixels

287287

Only seven digits were used: ‘0’, ‘1’, ‘2’, ‘3’, ‘4’,
‘6’, and ‘9’. ‘0’ occurred most often. All this
might seem to be surprising, but a convincing ex-
planation was suggested by a colleague [23] that
‘5’, ‘7’ and ‘8’ are omitted for sound usability
reasons: 5 is very hard to tell apart from 6, 7 is
written differently in different countries and often
what looks like a 7 may in fact be a 1, and 8 can
look like 6 or 9.
Not many digits in a challenge overlapped or
touched each other. Each challenge appeared to be
vulnerable to either the vertical or the snake seg-
mentation attack.
A one-to-one mapping between a digit and its
pixel count was established in Table 3.

Digit Pixel Count
0 234
1 109
2 182
3 164
4 173
6 181
9 183

Table 3. A digit-pixel count lookup table for Scheme 3

Our attack was largely based on the lookup table and a
segmentation algorithm. With the vertical segmentation
algorithm, we achieved a success rate of 61% on the sam-
ple set, and 63% on a test set of another 100 random sam-
ples. With the snake segmentation algorithm, the success
rate was boosted to 100% on both the sample and test
sets.

In Scheme 4 (user_string_image), each challenge was
a distorted image of a user-defined sequence, which had a
maximum length of 15 and could include letters A-Z, a-z
and numbers 0-9. The distortion method was the same as
in Schemes 1-3. We observed that in this scheme, our
lookup table in Table 2 was still valid. Among letters a-z,
only ‘a’ and ‘y’ had the same pixel count; otherwise, each
letter had a unique but constant pixel count. Each digit
(from ‘0’ to ‘9’) had a unique but constant pixel count,
and digits 0,1,2,3,4,6,9 had the same pixel counts as they
had in Scheme 3.

It is straightforward to apply our attacks to breaking
Scheme 4. However, a little more effort is needed to dif-
ferentiate characters with identical pixel counts. As shown
in Fig 13, there are more such characters than before.
However, just as we did in the previous section, it is
straightforward to develop simple geometric methods to
differentiate these characters. In addition, special care
might be needed to segment letters ‘i’ and ‘j’. But in gen-
eral, they could be treated as broken letters.

‘J’ = ‘L’= 111 ‘W’ = ‘0’ = 234

‘P’ = ‘V’ = 162 ‘A’ = ‘9’ = 183

‘K’ = ‘O’ = 178 ‘U’ = ‘3’ = 164

 ‘X’ = ‘6’ = 181

‘F’ = ‘t’ = 133

‘C’ = ‘e’ = 159 ‘a’=‘y’ = 158

 'H' = 'p' = 186

 'I' = 'v' =121 ‘H’ = ‘p’ = ‘5’ = 186

Fig13. Characters with an identical pixel count in {A-Z, a-z,
0-9}.

We did not implement our attacks on Scheme 4, but
we believe it is easy to achieve a similar success as in
previous sections.

7 Attack Speed

We implemented our attacks in Java (little effort was
spent in optimizing the run-time of code). Each attack was
run ten times on the test set of each scheme on a laptop
computer with a Pentium 2.8 GHz CPU and 512MB
RAM, and the average speed was taken, together with the
slowest one (see Table 4). The figures in the table show
that our attacks were efficient: it took around 20~50 ms to
break a challenge in all the schemes.

Time (ms)
CAPTCHA Attacks

Total
samples

Success
Avg. worst

VS +
dictionary

100 94 5318 6485
Scheme 1

SS 100 99 3267 3875

Scheme 2 SS 100 99 4397 5031

Scheme3 SS 100 99 1709 2094

Table 4. Attack speed (“VS”: vertical segmentation; ‘SS’:
snake segmentation).

The snake segmentation based attack worked more
slowly with Scheme 2 (random_letters_image) challenges
than with those from Scheme 1 (word_image). This was
because the speed of snake segmentation is dependent on
the characters in an image. For example, it is much slower
to segment letters such as 'U' and 'X', since they have
“valley” shapes where snakes can get trapped and then
take long time to emerge from. Our observation con-
firmed that the Scheme 2 samples we collected happened
to have used such letters more often than the Scheme 1
samples.

8 Discussion

8.1 Is Captchaservice.org the only victim?

288288

Fatal design mistakes made it easy for us to break all
the four visual CAPTCHA schemes provided by
Captchaservice.org. Mistakes exploited by our attacks
include the following.

It was easy to separate foreground text from
background with an automatic program.
The random shearing technique as implemented
was vulnerable to simple segmentation attacks.
Constant and (almost) unique pixel counts for
each character often made it feasible to recognise
a character by counting the number of foreground
pixels in each segment.

Many other visual CAPTCHAs used on the Internet
are vulnerable to our attacks, since their designs have (or
had) similar errors. We briefly discuss a few schemes as
follows.

Bot Check [18] is a popular Wordpress plug-in for
protecting against automated blog posts. Two versions of
this tool are available, but they generate CAPTCHA chal-
lenges in the same way. Fig 14 shows some sample chal-
lenges generated by Bot Check 1.1. In this scheme, distor-
tion mainly relies on a noisy background. However, al-
though multiple colours are used in each challenge, the
foreground is of a single colour that is distinct from the
background (see Fig 14b). It was straightforward to ex-
tract the challenge text, segment it and then use the pixel
count method to decode each challenge. Our attacks have
broken this scheme with 100% success, although most
samples we collected were resistant to the OCR program
we used in our experiments.

(a) (b)

Fig14. Bot-Check 1.1 sample challenges (a) original size;
(b) zoom 2

BotBlock [20] is another visual CAPTCHA scheme
for blocking spam bots from auto-filling web forms. As
showed in Fig 15 (a), random letters are used in this
scheme, and they appear in different places in a challenge.
A sophisticated colour management method is also intro-
duced. Backgrounds are of multiple colour blocks of ran-
dom shapes, and foreground colours also occur in the
background. All the samples we tested were resistant to
the OCR program we used. In our experiments, we suc-
cessfully extracted the challenge text (see Fig 15b) by
exploiting its colour pattern -- the same colour occurs
repetitively. Then, we applied the pixel count method.

When necessary, geometrical analysis was also used to
tell apart letters with identical pixel counts. Our attacks
have successfully broken all of the 100 random samples
we tested.

 (a)

 (b)

Fig15. (a) BotBlock sample challenges (b) Extracted chal-
lenge texts

HumanVerify [21] is a simple CAPTCHA scheme
that claims to be used by more than 1,000 sites. Fig 16a
shows some sample challenges. It appears that this
scheme is also vulnerable to our attacks. In a small-scale
experiment (only 10 random samples were used), our
program could easily get rid of the dotted lines, and re-
store characters to the form as shown in Fig 16b. Then,
approximate pixel counting and geometrical analysis en-
abled us to decode all the samples successfully.

(a)

 (b)

 Fig16. Human Verify sample challenges

As verified in a small-scale experiment (where 10 ran-
dom samples were used for each scheme), our attacks
could break or aid in breaking some schemes that were
listed at the PWNtcha site [9], e.g.:

the Clubic scheme,
the Ourcolony scheme,
the Scode scheme ([19] is the vendor site)
the lmt.lv scheme (still actively used at
www.lmt.lv)

The Scode scheme is similar to Bot Check, except that
multiple typefaces are used. For the last two schemes, a
little additional effort would be needed to remove the grid
lines in each challenge.

8.2 Lessons

289289

The first lesson we have learnt is the following: a
CAPTCHA scheme that is resistant to OCR software at-
tacks is not necessarily secure, and it could be vulnerable
to (simple) customized attacks. Without a rigorous, inde-
pendent robustness evaluation, a CAPTCHA scheme
might provide only a false sense of security.

Second, segmentation methods can be critical for the
success rate of attacks. As shown in early sections, the
snake segmentation has contributed much more to the
success rate than the vertical segmentation. This echoes
an observation by Chellapilla and Simard [7] that most of
their failures (of breaking CAPTCHA challenges) were
due to incorrect segmentations.

Scheme 4 (user_string_image), as discussed in Section
6, could be broken with a high success rate. This implies
that the multimodal scheme, of which Scheme 4 was a
part, was defeated. Therefore, another lesson is: a multi-
modal CAPTCHA might support better accessibility, but
if any mode is weak, the entire scheme could be insecure
or even useless.

We have also gained some new insights on the design
of visual CAPTCHA schemes that can be of generic inter-
est. First, for each of the visual schemes provided by
Captchaservice.org, it was a useless design decision to
allow the program to pick two different colours randomly
for a challenge. Such a design would not introduce any
advantage over a fixed two-colour scheme. Instead, it
could cause serious usability problems for colour-blind
people.

Interestingly, using multiple colours in a CAPTCHA
scheme does not necessarily make it harder to extract the
distorted text or increase the robustness of the scheme in
some other way. Bot Check and BotBlock are two good
examples. Another example is the well known Gimpy-r
scheme: the dominant colour of distorted texts in each
challenge always had the lowest intensity amongst all
colours used in the challenge, and this colour (often
black) never appeared in the background. This made it
easy to extract the challenge text, and the colourful back-
ground was useless most of the time – rather, its negative
side effect is obvious: it confuses people and decreases
the usability of the scheme.

Next, although lexical information (English words in
our case) made Scheme 1 (word_image) vulnerable to
dictionary attacks, and the failure of vertical segmentation
was significantly compensated for by the dictionary at-
tacks, it is not necessarily a design mistake to make use of
words. The reason is simple: one of our attacks has
achieved a better success rate on the same scheme without
using any dictionary. We are not convinced that it is abso-
lutely a bad idea to make use of lexical information in
CAPTCHA schemes. Instead, lexical information can
improve the usability of a visual CAPTCHA scheme. For
example, it might be difficult for people to recognise in-
dividual characters that were distorted too much. But
when these characters occurred as part of a word in a

challenge, people could easily solve the challenge using
the lexical context, as suggested by Gestalt psychology
[3] (i.e., humans are good at inferring whole pictures from
only partial information). What really matters is how to
make use of lexical information properly in CAPTCHAs.
Some obvious thoughts to this end include the following:
the dictionary should be large enough; when embedded
into challenges, all words should be randomly picked,
and, more importantly, the distortion method used should
be resistant to segmentation attacks.

8.3 Defence

Simple methods that can defeat our attacks (but not
necessarily other types of attacks) include the following.

Make it hard to separate the text from the back-
ground, e.g. by using multiple colours for both fore-
ground and background and leaving no pattern that
could be used to distinguish foreground automati-
cally, and including some foreground colours into the
background and vice versa.
Make it hard to segment each image, e.g. by having
characters connected or overlapped with each other,
by adding more cracks in each character, and by add-
ing distortion such as drawing arcs above the chal-
lenge (note that arcs would be useless unless they
share some or all of the foreground colours).
Make it impossible to distinguish a character by
counting its pixels. For example, all characters have
the same pixel count all the time. Or a character can
have very different pixel counts in different chal-
lenges (if the difference is not large enough, then
probably an approximation method could be used to
tell each character).

9 Conclusions

We have exploited fatal design mistakes to develop
simple attacks that could break, with near 100% success,
four visual CAPTCHA schemes (including one visual
component of a multimodal scheme) provided by
Captchaservice.org -- these schemes all employed sophis-
ticated distortions, and they were effectively resistant to
OCR software attacks and appeared to be secure.

It is alarming that we have also found that many other
visual CAPTCHAs deployed on the Internet made similar
mistakes, and thus could be effectively broken by our
simple attacks. The major reasons that we suspect can
explain this scale of failure are the following. Although a
few pioneering efforts shed some light on how to design
visual CAPTCHAs, our collective understanding of this
topic is still in its infancy. There were a few design guide-
lines and rules of thumb scattered in the literature, but
many more are yet to be identified. Neither is there a sys-
tematic method for verifying whether a CAPTCHA is

290290

indeed robust. Otherwise, the fatal design mistakes identi-
fied in this paper might have been easily avoided. There-
fore, our paper calls for further research into the design of
practically secure and robust CAPTCHA schemes, a rela-
tively new but important topic, and in particular into es-
tablishing both a robustness evaluation method and a
comprehensive set of design guidelines – the latter can
include, for example, what should be included or avoided
in CAPTCHA design, as well as what could be used.

For the same reason as speculated above, many of to-
day’s CAPTCHAs are likely only to provide a false sense
of security. We expect that systematically breaking repre-
sentative schemes will generate convincing evidence and,
as demonstrated by this paper, establish valuable insights
that will benefit the design of the next generation of ro-
bust and usable CAPTCHAs.

Acknowledgement

We are grateful to Brian Randell and Lindsay Marshall
for their valuable comments and proofreading. Comments
from anonymous referees also helped improve this paper.
This work was partially supported by the EU funded NoE
ReSIST project.

References
1. L Von Ahn, M Blum and J Langford. “Telling Humans and

Computer Apart Automatically”, CACM, V47, No2, 2004.

2. HS Baird, MA Moll and SY Wang. “ScatterType: A Legible
but Hard-to-Segment CAPTCHA”, Eighth International
Conference on Document Analysis and Recognition, August
2005, pp. 935-939

3. D Bernstein, EJ Roy, TK Srull, CD Wickens. Psychology
(2nd ed.). “Chap 5. Perception”. Houghton Mifflin Co.,
1991.

4. M Chew and HS Baird. “BaffleText: a human interactive
proof”. Proceedings of 10th IS&T/SPIE Document Recogni-
tion & Retrieval Conference; 2003, San Jose; CA; USA.

5. AL Coates, H S Baird and RJ Fateman. “PessimalPrint: A
Reverse Turing Test”, Int'l. J. on Document Analysis & Rec-
ognition, Vol. 5, pp. 158-163, 2003.

6. Casey. “Using AI to beat CAPTCHA and post comment
spam”, http://www.mperfect.net/aiCaptcha/, 1/30/2005.

7. K Chellapilla, and P Simard, “Using Machine Learning to
Break Visual Human Interaction Proofs (HIPs),” Advances
in Neural Information Processing Systems 17, Neural Infor-
mation Processing Systems (NIPS), MIT Press, 2004.

8. T Converse, “CAPTCHA generation as a web service”, Proc.
of Second Int’l Workshop on Human Interactive Proofs
(HIP’05), ed. by HS Baird and DP Lopresti, Springer-
Verlag. LNCS 3517, Bethlehem, PA, USA, 2005. pp. 82-96

9. Sam Hocevar. PWNtcha - captcha decoder web site,
http://sam.zoy.org/pwntcha/, accessed Jan 2007.

10. Greg Mori and Jitendra Malik. “Recognising Objects in Ad-
versarial Clutter: Breaking a Visual CAPTCHA”, IEEE Con-

ference on Computer Vision and Pattern Recognition
(CVPR'03), Vol 1, June 2003, pp.134-141.

11. Gabriel Moy, Nathan Jones, Curt Harkless and Randall Pot-
ter. “Distortion Estimation Techniques in Solving Visual
CAPTCHAs”, IEEE Conference on Computer Vision and
Pattern Recognition (CVPR'04), Vol 2, June 2004, pp. 23-28

12. D Naccache and C Whelan. “9/11: Who alerted the CIA?
(And Other Secret Secrets)”, Rump session, Eurocrypt, 2004.

13. Openwall wordlists collection (free version), available at
ftp://ftp.openwall.com/pub/wordlists/, accessed Aug 2006.

14. C Pope and K Kaur. “Is It Human or Computer? Defending
E-Commerce with CAPTCHA”, IEEE IT Professional,
March 2005, pp. 43-49

15. J Yan. “Bot, Cyborg and Automated Turing Test”, the Four-
teenth International Workshop on Security Protocols, Cam-
bridge, UK, Mar 2006. Also available at
http://www.cs.ncl.ac.uk/research/pubs/trs/papers/970.pdf.

16. http://captchaservice.org, accessed July 2006.

17. http://www.abbyy.com/, accessed Aug 2006.

18. Bot Check 1.1, available at
http://www.blueeye.us/wordpress/2005/01/08/human-check-
for-wordpress-comments/, 2005. Bot-Check 1.2, available at
http://blog.rajgad.com/work/software/2006-11/bot-check-12-
wordpress-anti-spam-comment-plugin.html, Nov 2006.

19. James Seng, “Solutions for comments spasm”,
http://james.seng.cc/archives/000145.html (source code
available), Oct, 2003.

20. BotBlock.
http://www.chimetv.com/tv/products/botblock.shtml

21. http://www.humanverify.com

22. http://www.captcha.net/

23. L Marshall, Personal communications, 2007.

24. P Simard, R Szeliski, J Benaloh, J Couvreur and I Calinov,
“Using Character Recognition and Segmentation to Tell
Computers from Humans”, Int’l Conference on Document
Analysis and Recogntion (ICDAR), 2003.

291291

