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Abstract

Visual CAPTCHAs have been widely used across the 
Internet to defend against undesirable or malicious bot 
programs. In this paper, we document how we have 
broken most such visual schemes provided at 
Captchaservice.org, a publicly available web service for 
CAPTCHA generation. These schemes were effectively 
resistant to attacks conducted using a high-quality 
Optical Character Recognition program, but were broken 
with a near 100% success rate by our novel attacks. In 
contrast to early work that relied on sophisticated 
computer vision or machine learning algorithms, we used 
simple pattern recognition algorithms but exploited fatal 
design errors that we discovered in each scheme. 
Surprisingly, our simple attacks can also break many 
other schemes deployed on the Internet at the time of 
writing: their design had similar errors. We also discuss 
defence against our attacks and new insights on the 
design of visual CAPTCHA schemes.  

1 Introduction 

CAPTCHA stands for “Completely Automated Public 
Turing Test to Tell Computers and Humans Apart”, and a 
CAPTCHA is a program that generates and grades tests 
that most human can pass, but current computer programs 
cannot pass [ 1]. Such tests are often called CAPTCHA 
challenges, and they are based on a hard, open problem in 
AI. At present, CAPTCHA is almost a standard security 
mechanism for defending against undesirable and mali-
cious bot programs on the Internet, e.g., bots that could 
sign up for thousands of accounts a minute with free 
email service providers, bots that could send out thou-
sands of spam messages each minute, and bots that could 
in one act post numerous comments in weblogs (“blogs”) 
pointing both readers and search engines to irrelevant 
sites.

To date, the most commonly used are various types of 
visual CAPTCHAs, in which a challenge often appears as 
an image of distorted text that the user must decipher. 
These schemes typically make use of the difficulty of 
recognising distorted text with state of the art computer 
programs. Well-known visual CAPTCHAs include EZ-
Gimpy, Gimpy and Gimpy-r (see [ 1,  22]), all developed at 
Carnegie Mellon University. Google and Microsoft also 

developed their own visual CAPTCHAs for their web 
email services. Many more schemes have been put into 
practice, although they are less visible in the literature. In 
recent years, there were some pioneering research efforts 
exploring how to design visual CAPTCHAs properly, e.g. 
[ 2,  4,  5,  7, 24]. However, it appears that this subject is still 
an art, rather than a science. 

Captchaservice.org is, to our knowledge, the first web 
service that is designed for the sole purpose of generating 
CAPTCHA challenges. It supports multiple visual and 
non-visual CAPTCHA schemes, and it is publicly avail-
able at [ 16]. Using the API provided by this service, peo-
ple can obtain a chosen type of CAPTCHA challenge 
generated on the fly to protect their blogs from comment 
spam attacks, or to defend against other type of bots. The 
design of this web service and the CAPTCHA schemes it 
supports were discussed and analysed in a recent peer-
reviewed paper [ 8]. In the present paper, we document 
how, using novel attacks, we have broken most visual 
CAPTCHA schemes provided by captchaservice.org.
These CAPTCHAs were effectively resistant to Optical 
Character Recognition (OCR) software attacks, and thus 
appeared to be secure. However, our attacks could 
achieve a success rate of near 100% for each of these 
schemes, and each challenge could be broken essentially 
instantly. As a result, an adversary could easily bypass all 
the defence provided by these schemes in real time.  

Breaking CAPTCHAs1 is not new. For example, Mori 
and Malik [ 10] have broken the EZ-Gimpy (92% success) 
and the Gimpy (33% success) CAPTCHAs with sophisti-
cated object recognition algorithms. Moy et al [ 11] devel-
oped distortion estimation techniques to break EZ-Gimpy 
with a success rate of 99% and 4-letter Gimpy-r with a 
success rate of 78%. In contrast to such earlier work that 
relied on sophisticated computer vision algorithms, our 
attacks used naïve pattern recognition algorithms but ex-

                                                          
1 The term of “Breaking CAPTCHA” is ambiguous. For example, 
when CAPTCHA is interpreted as a simple challenge-response 
protocol, “breaking CAPTCHA” can mean breaking the protocol, 
e.g. via a man-in-the middle or an oracle attack. In this paper, 
“breaking CAPTCHA” means to write a computer program that 
automatically solves CAPTCHA challenges – ideally, this task 
should be as hard as solving the underlying AI problem. (“Breaking 
CAPCHA”, “breaking a CAPTCHA protocol”, and “Defeating 
CAPTCHA based bot defence” are three different but related 
notions, as clarified in [ 15].)
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ploited fatal design errors in each of the schemes that we 
have broken. Compared with the vision researchers who 
aimed to advance research in AI by breaking 
CAPTCHAs, we as computer security specialists aimed to 
understand how a CAPTCHA could fail as a security sys-
tem and what we could learn from these failures. 

The main contributions of this paper are the following. 
First, we have identified fatal flaws in the design of four 
visual CAPTCHA schemes from captchaservice.org, and 
shown that all these schemes can be broken with a high 
success rate. We have also found that these flaws are also 
present in many other CAPTCHA schemes deployed on 
the Internet, also making them vulnerable to our attacks. 
We informed CERT of our results several months ago so 
that the developers of the schemes were given ample 
opportunity to improve their CAPTCHA security by 
fixing these flaws. Second, our work reveals that the 
security of CAPTCHAs is much poorer in real life than it 
might have appeared to be. Many schemes deployed for 
everyday use on the Internet at the time of writing were 
very weak, and they could be easily broken without the 
need to invent a sophisticated algorithm. Moreover, we 
also discuss lessons we have learnt from breaking these 
schemes and how to defend against our attacks – all this 
contributes to understanding how to design better visual 
CAPTCHA schemes in general. Our work reiterates the 
necessity of independent security evaluations before a 
system is considered secure. Without such evaluation, a 
system might result in providing a false sense of security. 
This also raises the following important questions: How 
do we turn the design of CAPTCHAs from an art to a 
science, and in particular, how do we rigorously evaluate 
the robustness (and other properties) of a CAPTCHA 
scheme?  

The rest of this paper is organised as follows. Section 
2 discusses related work. Section 3 reviews the schemes 
we have broken, and evaluates their strength with a high 
quality OCR program. Sections 4-6 present our attacks on 
each scheme respectively. Section 7 measures the speed 
of our attacks. Section 8 mentions other schemes that are 
vulnerable to our attacks, and discusses both lessons we 
have learnt, and defences to our attacks. Section 9 gives 
concluding remarks. 

2 Related Work 

Chellapilla and Simard [ 7] attempted to break a num-
ber of visual CAPTCHAs taken from the web (including 
those used in Yahoo and Google/Gmail) with machine 
learning algorithms. However, their success rates were 
low, ranging from merely 4.89% to 66.2%. No empirical 
data for attack speed were reported, and therefore it is 
unclear whether their attacks could break these schemes 
in real time. An attack on an unnamed simple CAPTCHA 
scheme with neural networks was discussed at [ 6], and it 
achieved a success rate of around 66%.  

PWNtcha [ 9] is an excellent web page that aims to 
“demonstrate the inefficiency of many captcha implemen-
tations”. It comments briefly on the weaknesses of a 
dozen visual CAPTCHAs. These schemes were claimed 
to be broken with a success rate ranging from 49% to 
100%. However, no technical detail was publicly avail-
able (and probably as a consequence, at a prominent place 
of this web page, a disclaimer was included that it was not 
“a hoax, a fraud or a troll”). More distantly related (in 
spirit) is work by Naccache and Whelan [ 12] on decrypt-
ing words that were blotted out in declassified US intelli-
gence documents, although it was not about CAPTCHAs 
as such. 

The limitations of defending against bots with 
CAPTCHAs (including protocol-level attacks) were dis-
cussed in [ 15]. A recent survey on CAPTCHAs research 
can be found in [ 14]. 

3 Targeted CAPTCHA schemes

Captchaservice.org supports the following four visual 
schemes: 

word_image: In this scheme, a challenge is a dis-
torted image of a six-letter word.  
random_letters_image: A challenge is imple-
mented as a distorted image of a random six-letter 
sequence. 
user_string_image: A challenge is a distorted im-
age of a user-supplied string of at most 15 charac-
ters.
number_puzzle_text_image: This is a multi-modal 
scheme, which includes a distorted image of a 
random number, as well as a textual description of 
a puzzle involving the number. A user can solve 
such a challenge either by recognising the number 
in the image, or by solving the textual puzzle. The 
advantage of such a multimodal scheme is mainly 
to improve its usability and accessibility. In this 
paper, we are interested in its visual mode only.  

Fig 1. Sample challenges for four visual CAPTCHAs 
available at Captchaservice.org (clockwise: word_image,

random_letters_image, user_string_image, num-
ber_puzzle_text_image)

All these schemes use a random_shear distortion 
technique, which [8] describes, thus: “the initial image of 
text is distorted by randomly shearing it both vertically 
and horizontally. That is, the pixels in each column of the 
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image are translated up or down by an amount that varies 
randomly yet smoothly from one column to the next. 
Then the same kind of translation is applied to each row 
of pixels (with a smaller amount of translation on aver-
age).” Fig 1 shows sample challenges from the above 
schemes. The word_image scheme also supports an addi-
tional distortion technique, but it is beyond the scope of 
this paper.  

To benchmark how resistant they were to OCR soft-
ware attacks, we tested all except the third scheme with 
ABBYY FineReader V.8 [ 17], a commercial OCR prod-
uct. We chose this program for two reasons: 1) as an 
award-winning product, it is considered one of the best in 
the market, and 2) we happen to have access to the soft-
ware. We did not test the user_string_image scheme, 
since other than that a user could specify the text string, it 
seemed that nothing else was different from the first or 
second scheme.  

Number of challenges  

Partially recog-
nised

(no. of characters)  

CAPTCHA 
Scheme All

characters
Recognised

5 4 3 2 1

Zero  
characters
Recognised

Word_image 0 0 3 6 8 16 67 

Random_letters 
_image 

0 0 2 4 8 20 66 

Number_puzzle 
_text_image 

10 13  77 

Table 1. Test results of resistance to OCR software 
automatic recognition attacks. 

We collected 100 random samples from [ 16] for each 
scheme to be tested, and performed the following two 
attacks on them: 1) we fed each sample into the OCR 
software for an automated recognition, and 2) we manu-
ally segmented each sample, and then let the software 
recognise individual characters. The test results are as 
follows (Table 1 summarises the results of Attack 1). 

Word_image. In Attack 1, none of the samples was 
completely recognised. For 67 challenges, none of the 
characters were recognised, whereas the remaining 33 
challenges were partially recognised between 1 and 4 
characters. Fig 2 (a) gives snapshots of a partially recog-
nised challenge (“REMOTE” recognised as “R£MO^”) 
and a completely failed one (“FRISKY” recognised as 
“tmsi”). In Attack 2, 38% (128 out of 600) letters were 
recognised; however, only one sample had all its 6 letters 
recognised and another had five of its letters recognised. 
This is not surprising, since the individual recognition rate 
theoretically implies a mere success rate of 0.3% (.38^6) 
for breaking this scheme. 

Random_letters_image. In Attack 1, no sample was 
completely recognised. 66 challenges had none of their 
characters recognised, but the remaining 34 challenges 
were partially recognised between 1 and 4 characters. Fig 

2(b) gives snapshots of a partially recognised challenge 
and a completely unrecognised one. In Attack 2, 41% 
(248 out of 600) letters were recognised. In theory, this 
implies a success rate of about 0.5% (.41^6) for breaking 
this scheme. In our experiment, 2% (2 out of 100) sam-
ples had all its 6 letters recognised.  

Number_puzzle_text_image. In Attack 1, 10 samples 
were completely recognised, 13 partially recovered and 
77 challenges having none of their characters successfully 
recognised. A close look at this set of samples showed: 
they had a varying length, consisting of 1-7 digits (on 
average 2.9 digits per challenge). So we did not pinpoint 
how many characters were recovered for those partially 
recognised samples. We also found that all those com-
pletely recovered challenges contained a single digit only, 
like the first sample in Fig 2(c). While the OCR program 
recovered such simple challenges, it completely failed to 
recognise any of more complex ones, such as the other 
sample in Fig 2(c). In Attack 2, 16% (46 out of 286) char-
acters were successfully recognised. However, only 11 
samples were completely recognised, 30 partially recov-
ered and 59 challenges having none of their characters 
successfully recognised. 

Therefore, it appears that the random_shear distor-
tion provides reasonable resistance to OCR software 
attacks, and the distortion implemented in the 
word_image scheme is as good as in the ran-
dom_letters_image scheme. We also observed that the 
OCR program we used in general had difficulty in differ-
entiating between characters ‘H’ and ‘N’, ‘I’ and ‘T’, ‘L’ 
and ‘V’, and ‘M’ and ‘W’  in the samples we presented.  

       
(a) 

       
      (b) 

           
      (c) 

Fig 2. Snapshots of the results of OCR Attack 1. (a) Two 
word_image samples. (b) Two random_letters_image samples. 

(c) Two number_puzzle_text_image samples.  

4 Breaking Scheme 1 

Although the visual CAPTCHA schemes discussed in 
the previous section appeared to be secure, we took up the 
challenge of breaking them. In this and following sec-
tions, we report the details of defeating the word_image,
random_letters_image, number_puzzle_text_image and 
user_string_image schemes, which are labelled as 
Scheme 1, 2, 3 and 4, respectively. 
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In Scheme 1, each challenge was implemented as a 
distorted image of a six-letter English word, which was 
randomly chosen from a fixed set of 6,000 words [ 8]. 
More sample challenges (taken from [ 16]) are shown in 
Fig 3. We have broken this scheme with a basic attack 
algorithm and a number of refinements. 

Fig 3. Scheme 1 CAPTCHA sample challenges (Each im-
age is of 178 × 83 pixels, PNG format). 

4.1 Basic attack algorithms 

With the aid of [ 8] and documentation available at 
[ 16], we studied a sample set of 100 random word_image
CAPTCHA challenges which we collected, and estab-
lished the following empirical observations. 

Only two colours were used in each challenge, 
one for background and another for foreground 
which was the distorted challenge text; the choice 
of colours was either random or specified by the 
user. Therefore, it is easy to separate the text from 
the background. 

        
Letter Pixel Count Letter Pixel Count 

A 183  N 239 
B 217  O 178 
C 159  P 162 
D 192  Q 229 
E 163  R 208 
F 133  S 194 
G 190  T 175 
H 186  U 164 
I 121  V 162 
J 111  W 234 
K 178  X 181 
L 111  Y 153 
M 233  Z 193 

  Table 2. A letter–pixel count lookup table for letters A-
Z. (Note: ‘J’ and ‘L’ have the same pixel count. So are ‘K’ 

and ‘O’, and ‘P’ and ‘V’.) 

Only capital letters were used. Although a letter 
might be distorted into a different shape each 
time, it consisted of a constant number of fore-
ground pixels in a challenge image. That is, a let-
ter had a constant pixel count. We worked out the 
pixel count for each of the letters A to Z (see Ta-
ble 2). As plotted in Fig 4, most letters had a dis-
tinct pixel count.  

Few letters overlapped or touched with each other 
in a challenge, so many challenges were vulner-
able to a vertical segmentation attack: the image 
could be vertically divided by a program into 
segments each containing a single character.  

 Our basic attack algorithm is largely based on the 
above observations. One of its key components is a verti-
cal segmentation algorithm, which works as follows.  
1. Obtaining the top-left pixel’s colour value, which 

defines the background colour of an image. Any pixel 
of a different colour value in this image is in fore-
ground, i.e. part of the distorted text.  

2. Identifying the first segmentation line. We map the 
image into a coordinate system, in which the top-left 
pixel has coordinates (0, 0), the top-right pixel (image 
width, 0) and the bottom-left pixel (0, image height). 
Starting from point (0, 0), a vertical “slicing” process 
traverse pixels from top to bottom and then from left 
to right. This process stops once a pixel with a non-
background colour is detected. The X co-ordinate of 
this pixel, x1, defines the first vertical segmentation 
line X = x1 -1.  
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Fig 4. Letters A-Z and their pixel counts. 

3. Vertical slicing continues from (x1+1, 0), until it de-
tects another vertical line that does not contain any 
foreground pixels – this is the next segmentation line.  

4. Vertical slicing continues from a pixel to the right of 
the previous segmentation line. However, the next 
vertical line that does not contain any foreground 
pixel is not necessarily the next segmentation line. It 
could be a redundant segmentation line, which would 
be ignored by our algorithm. Therefore, only when 
the vertical slicing process cuts through the next let-
ter, the next vertical line that does not contain any 
foreground pixels is the next segmentation line.  
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5. Step 4 repeats until the algorithm determines the last 
segmentation line (after which, the vertical slicing 
will not find any foreground pixels).  

Once a challenge image is vertically segmented, our 
attack program simply counts the number of foreground 
pixels in each segment. Then, the pixel count obtained is 
used to look up Table 2, telling the letter in each segment. 

Fig 5 shows how our basic attack has broken a chal-
lenge. First, the vertical segmentation divided the chal-
lenge into 6 segments. Second, each segment was scanned 
to get the number of foreground pixels in it. Then, the 
pixel count obtained in the previous step was used to look 
up the mapping table, recognising a character Ci for each 
segment Si (i=1, …, 6). Finally, the string ‘C1 C2 C3 C4 C5

C6’ gives the result. 

Fig 5. The basic attack: an example. 

By combining the vertical segmentation and a lookup 
table, we achieved on the sample set a success rate of 
36%, that is, 36 out of 100 challenges were completely 
broken.  

4.2 Enhancement 1: dictionary attack  

Our basic algorithm would fail to break some chal-
lenges completely. Fig 6 gives a failing example, where 
the vertical segmentation method could not separate let-
ters ‘S’ and ‘K’ because the vertical slicing line could not 
split the two letters without touching both of them. Our 
basic attack could not do anything more than to give a 
partially recognised result “FRI**Y” (we use ‘*’ to repre-
sent one unrecognised character). However, since Scheme 
1 challenges all used words, our basic attack was en-
hanced by the following “dictionary attack”.  

A dictionary of about 6,000 six-letter English words 
was introduced. Since the dictionary used in Scheme 1 
was not available, as a starting point we compiled our 
dictionary using a free wordlist collection [ 13] that is of-
ten used with password crackers.  

Fig 6. The basic attack: a failing example. (The partial 
line between ‘S’ and ‘K’ is for illustration only, and it did 

not exist in a segmented result.)

Any partial result returned by the basic algorithm was 
used as a string pattern to identify candidate words in the 
dictionary that match the pattern. Since there could be 
multiple candidate words, a simple solution was intro-
duced to find the best possible result as follows. For each 
dictionary entry, we pre-computed (using Table 2) a pixel
sum, which is the total number of pixels this word could 
have when it was embedded in a CAPTCHA challenge. 
This pixel sum was stored along with the word in the dic-
tionary. We also worked out, on the fly, a pixel sum for 
the unbroken challenge, which is the total number of all 
foreground pixels in the challenge. The first candidate 
word with the same pixel sum as the challenge was re-
turned as the final recognition result.  

Fig 7. The basic attack: two enhancements. 

Fig 7 illustrates how the enhanced algorithm worked. 
In this case, the partial result ‘FRI**Y’ obtained by the 
basic algorithm was used to identify all words that start 
with ‘FRI’ and end with ‘Y’ in the dictionary. Five candi-
date words were found: ‘FRIARY’, ‘FRILLY’, 
‘FRISKY’, ‘FRIZZY’ and ‘FRIDAY’. However, 
‘FRISKY’ was returned as the best possible result, since it 
was the only candidate having a pre-computed pixel sum 
of 987, which equals to the pixel sum of the unbroken 
challenge (133+208+121+372+153=987).  

283283



To make the dictionary attack work properly, it is cru-
cial to create a correct string pattern after the vertical 
segmentation process. For example, when the vertical 
segmentation divided an image into only four segments 
and the corresponding partial result was in the following 
form: ‘B B ’, it was important to determine how many 
unrecognised letters were in each box ‘ ’. Otherwise, 
‘B*B***’, ‘B**B**’ or ‘B***B*’ would give totally dif-
ferent recognition results. If all these patterns were used 
to look up the dictionary, it would be likely to find many 
candidates with an identical pixel sum.  

This is a problem of indexing letters in their correct 
positions, and it was addressed using the following two-
step method.  

1) For some cases, it was trivial to work out a string 
pattern with contextual information. For instance, if a 
segmented image contained only one unrecognised seg-
ment, e.g. the example in Fig 7, the number of unrecog-
nised characters in the segment was six minus the number 
of all recognised characters. Another straightforward case 
was when no character was recognised in an image – then 
the number of unrecognised segments in the image did 
not really matter. For example, an image segmented into 
three unrecognised segments ‘ ’ would be no differ-
ent to one for which the vertical segmentation completely 
failed. 

2) When the above method did not work, e.g. in the 
case of ‘B B ’, we relied on the number of pixels in 
each unrecognised segment in order to deduce how many 
characters the segment contained. For example, when the 
number of pixels in a segment was larger than 239 (the 
largest pixel count in Table 2, i.e., ‘N’) but smaller than 
2×239, it was likely that this segment had two unrecog-
nised letters. There were exceptions that could not be 
handled this way. Although the average pixel count for 
letters A-Z was 178.80, ‘J’, ‘L’ and ‘I’ had a pixel count 
much smaller than the average. For example, the pixel 
sum of ‘ILL’ or ‘LIL’ was only 343; the pixel sum of ‘LI’ 
or ‘IL’ was a mere 232. We used an exception list to han-
dle such cases. On the other hand, the combination of 
‘LLL’, ‘JK’ and ‘KJ’ never or rarely occurs in English 
words. Due to the paper space limit, more details of this 
method are skipped.  

An alternative way of doing the pixel sum matching 
was to use unrecognised segment(s) only. In this way, no 
pixel sum would be stored in the dictionary, but more 
computation would have to be done on the fly. 

It is also worth noting that when none of the letters in 
a challenge could be recognised by the basic algorithm, 
the pixel sum matching method in the dictionary attack 
could serve as the last resort.  

4.3 Further enhancements   

The following enhancements were developed to han-
dle typical “troublemakers” that could not be broken by 
the above techniques.  

Letters with an identical pixel count. Letters having 
an identical pixel count could confuse our basic algo-
rithm. For example, the challenge in Fig 8 (a) was suc-
cessfully segmented into 6 parts, but it was initially rec-
ognised as “OELLEY”, leading to an incorrect result. 
Since ‘O’ and ‘K’ have the same pixel count, our basic 
algorithm had only a 50% of chance for breaking this 
challenge.

To overcome this problem, we relied on the following 
“spelling check”: if a challenge includes a letter with a 
pixel count of 111 (‘J’ or ‘L’), 178 (‘K’ or ‘O’), or 162 
(‘P’ or ‘V’), each we generate variant, and then carry out 
multiple dictionary lookups to rule out candidate strings 
that are not proper words. For example, in the above case, 
both ‘OELLEY’ and ‘KELLEY’ were looked up in the 
dictionary. Since only “KELLEY” was in the dictionary, 
it was returned as the best possible result.  

This “spelling check” technique was also used to en-
hance the string pattern matching in the dictionary attack. 
For example, if a partial result recognised by the basic 
algorithm was “V*B*IC”, then both “V*B*IC” and 
“P*B*IC” would be valid matching patterns for identify-
ing candidate words in the dictionary.   

     
        (a)            (b)             

                             

                  
(c)

Fig 8. Typical troublemakers: a) Letters with an identical 
pixel count; b) Broken letters; c) Letters with additional or 

less pixels. 

Broken characters. A few challenges contained bro-
ken letters that misled the segmentation algorithm. As 
shown in Fig 8 b), due to a break in ‘H’, the letter was 
segmented into two parts instead of one.  

To overcome this problem, we introduced a two-step 
method as follows. First, once the vertical segmentation 
was done, our algorithm tested whether a segment was 
complete: if the number of foreground pixels in a segment 
was smaller than 111, the smallest pixel count in Table 2, 
then this segment was incomplete; if the number of fore-
ground pixels in a segment was larger than 111 but 
smaller than 239 (the largest pixel count in Table 2, i.e., 

Additional pixel 
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‘N’) and this number could not be found in the lookup 
table, then this segment is incomplete. Second, an incom-
plete segment would be merged with its neighbouring 
segment(s). A proper merging of segment was one for 
which the combined pixel count could lead to a meaning-
ful recognition result, e.g. the combined count was equal 
to or less than 239, and it could be found in the lookup 
table. When multiple proper combinations existed (e.g. S3

can be combined either with S2 or with S4), spelling check 
could serve as the last resort to find the best possible re-
sult.  

Additional pixel(s). In a few cases, a letter might con-
tain additional pixel(s) against its pixel count in the 
lookup table. For example, an additional pixel occurred 
above ‘A’ in Fig 8 c). To address this problem, we relied 
on an approximate table lookup: when a pixel count for a 
segment could not be located in the lookup table, this 
segment would be recognised as the most likely letter.  

This method does not succeed all the time, since some 
letters have close pixel counts (e.g., V, E and U; D, Z and 
S; M and W). However, sometimes, we could resort to the 
spelling check technique to find the correct result. For 
example, when multiple candidate answers were returned 
by the approximate method, spelling check could be used 
to choose the best possible solution.  

4.4 Results

With all the above enhancements, our attack achieved 
a success rate of 92% on the sample set. To check 
whether our attack was generic enough, we followed the 
practice described in [ 10,  11]. We collected another set of 
100 random challenges, and then run our attacks on this 
test set. Our attack completely broke 94 challenges in the 
test set. That is, a success rate of 94%. On the contrary, 
without image analysis, an attack program with access to 
the dictionary used in Scheme 1 has merely a 1/6000 
chance of guessing correctly.  

We did not analyse any challenges in the test set, and 
no additional modifications were made to our program. 
One arguable convenience we took advantage of is that 
we made sure our dictionary covered all words used in the 
test set. This could be avoided by using a large dictionary, 
although it would decrease the attack speed. However, as 
a security requirement, a CAPTCHA by definition should 
make its code and data publicly available [ 1], rather than 
relying on “security through obscurity”. 

Most failure cases in both the sample and the test sets 
were due to the same reason: the failure of vertical seg-
mentation led to partial results such as ‘S*****’ and 
‘******’, which matched too many candidate words that 
had the same pixel sum in the dictionary. The unique ex-
ception, which was in the test set, was a failure of the 
spelling check to differentiate between ‘P’ and ‘V’: two 
alternatives were both in the dictionary.  

5 Breaking Scheme 2  

In Scheme 2 (random_letters_image), each challenge 
is a distorted image of a random six-letter sequence, 
rather than an English word. However, the challenge im-
ages in Schemes 1 and 2 share many common characteris-
tics, such as: 

Each image is of the same dimension: 178 × 83 
pixels. Only two colours are used in the image, 
one for background and another for foreground 
which is the distorted challenge text. 
Only capital letters are used. Few letters overlap 
or touch with each other.  
Each letter has an (almost) constant pixel count. 
The one-to-one mapping from a pixel count to a 
letter in Table 2 is still valid.  

The basic attack algorithm in the previous section was 
also applicable to Scheme 2, and it has broken 28 out of 
100 random Scheme 2 challenges we collected. However, 
the dictionary attack did not work here. It is possible (but 
expensive) to build a dictionary of 6-random-letter strings 
(26^6 =308,915,776 dictionary entries). However, the 
pixel sum matching would often return multiple candi-
dates. Moreover, the spelling check technique was no 
longer applicable to differentiate letters with an identical 
pixel count.  

To boost the success rate, we have developed a new 
method, largely based on the following new ideas: a 
“snake” segmentation algorithm, which replaced the ver-
tical segmentation since it could do a better job of divid-
ing an image into individual letter components, and 2) 
some simple geometric analysis algorithms that differen-
tiated letters with the same pixel count.  

5.1 Snake segmentation 

Our snake segmentation method was inspired by the 
popular “snake” game, which is supported in most mobile 
phones. In this game, a player moves a growing snake on 
the screen, and tries to avoid collisions between the snake 
and dynamic blocks. In our algorithm, a snake is a line 
that separates the letters in an image. It starts at the top 
line of the image and ends at the bottom. The snake can 
move in four directions: Up, Right, Left and Down, and it 
can touch foreground pixels of the image but never cuts 
through them. Often, a snake can properly segment a chal-
lenge that the vertical segmentation fails to do. 

The first step of the snake segmentation was to pre-
process an image to obtain the first and last segmentation 
lines, as illustrated in Fig 9 (a). The first segmentation 
line (X= xfirst) was obtained as in the vertical segmentation 
algorithm, and then the vertical slicing started at point 
(width, 0), moving leftwards to locate the last segmenta-
tion line (X= xlast).
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The top and bottom edges of the image between these 
two segmentation lines were starting and ending lines for 
a snake. Since each letter occupies some width, we chose 
to refine the starting line by shifting 10 pixels to each 
segmentation lines. That is, for snakes, all possible start-
ing points are between (xfirst+10, 0) and (xlast - 10, 0). 

(a) (b) (c)

Fig 9. Snake segmentation. (a) Pre-processing: finding the first 
and last segmentation lines. b) Before segment finalizing. (c) Af-

ter segment finalizing.  

Next, the snake segmentation was started to divide the 
pre-processed image into segments. The following heuris-
tics control the movement of a snake: 

1. Whenever feasible, a snake moves down verti-
cally as much as possible. That is, Down is the di-
rection that has the highest priority.  

2. A snake moves down from its starting point until 
it is immediately above a foreground pixel. 

3. When a snake can move Left and Up only, it 
moves left one pixel. And then moves down as 
much as possible.  

4. When a snake can move Right and Up only, it 
moves right one pixel. And then moves down as 
much as possible.  

5. When a snake can move right and left only, it 
goes right. (Priority order: D > R > L > U) 

6. When a snake moves left, it cannot go to any 
point that is to the left of a previously completed 
segmentation line.  

7. A vertical slicing line could be a legitimate seg-
mentation line.  

8. Distance control: when a snake reaches the bot-
tom line, it is done.  

9. If a snake cannot reach the bottom, it is aborted 
and all its trace is deleted.  

10. No matter whether or not the previous snake suc-
ceeded in reaching the bottom, the next snake 
starts one pixel to the right of the previous starting 
point. 

There could be multiple snakes between two seg-
ments, see Fig 9(b), where for example the red block be-
tween ‘K’ and ‘S’ were in fact a set of snake lines that 
touched each other. Therefore, the last step was to finalise 
the segments. This process dealt with the following tasks: 
1) getting rid of redundant snakes: if there was no fore-
ground pixel in a segment, then this was an empty seg-
ment and one of its segmentation lines was redundant; 
and 2) when necessary, handling broken characters by 
merging neighbouring segments using the method dis-

cussed in the previous section. Fig 9(c) shows the final-
ised segments of a challenge, one for which vertical seg-
mentation would fail to segment overlapping letters T, J 
and K.

5.2 Simple geometric analysis  

To enhance the snake segmentation approach, we de-
signed simple algorithms to tell apart letters with an iden-
tical pixel count by analyzing their geometric layouts.  

Differentiating between ‘P’ and ‘V’. When a seg-
ment had a pixel count of 162, it could be either ‘P’ or 
‘V’. To determine which letter it was, this segment would 
be first normalised: its left segmentation line would be 
adjusted to cross its left-most foreground pixel vertically 
and similarly for the right segmentation line. Then, a ver-
tical line would be drawn in the middle of the normalised 
segment. If this middle line cut through the foreground 
text only once, this segment would be recognised as ‘V’; 
otherwise, it was recognised as ‘P’ (see Fig 10). It was 
unlikely for the middle line to cut through ‘V’ twice, 
since it was rare to use a rotated ‘V’ in a challenge pre-
sumably due to a usability concern: it would be very diffi-
cult for people to differentiate a rotated ‘V’ from a dis-
torted ‘L’ or ‘J’.  

(a) (b)  (c)

Fig 10. Recognising ‘P’ and ‘V’. (a) A segmented chal-
lenge. (b) The 1st  segment was normalised and successfully 
recognised as ‘P’. (c) The 6th  segment was normalised and 

successfully recognised as ‘V’. 

This method would not work when a ‘P’ or ‘V’ hap-
pened to have a crack in the middle of its normalised 
segment. However, it is trivial to address this exception: 
the middle line could be shifted horizontally a number of 
times, and each time the number of intersections it cut 
through the foreground would be checked. If two or more 
intersections occurred more often, then we are sure this 
segment was ‘P’; otherwise it was ‘V’.  

Telling ‘O’ and ‘K’ apart. When a segment had a 
pixel count of 178, it could be either ‘K’ or ‘O’. To de-
termine which letter it was, a vertical line would be drawn 
in the middle of the segment. If this line cut through the 
foreground text only once, this segment would be recog-
nised as ‘K’. If this cut-through line had two intersections 
with the foreground, the letter could be either ‘O’ or ‘K’. 
However, we observed that the distance between two in-
tersections, denoted by d, was larger for ‘O’ than for ‘K’. 
In our algorithm, if this distance was larger than 14 pixels 
(an empirical threshold), the letter was recognised as ‘O’; 
else, it was recognised as ‘K’. Fig 11 shows a segment 
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that was normalised and then successfully recognised as 
‘O’ in this way. 

                                             

Fig11.  A normalised segment was successfully recog-
nised as ‘O’. 

However, this method is not perfect. For example, if 
there was a break in letter ‘O’ and this break was exactly 
in the middle of the normalised segment, then the cut-
through line would only cross the foreground once. Thus, 
this letter would be wrongly recognised as ‘K’. However, 
this kind of failure was rare in our experiment.  

Differentiating between ‘L’ and ‘J’. To tell whether 
a segment is ‘L’ or ‘J’, the segment was first normalised. 
A horizontal line would then start to slice the segment 
horizontally from top to bottom, until it intersected the 
foreground text. If the intersection was closer to the left 
segmentation line, then the segment was recognised as 
‘L’; if the intersection was closer to the right segmenta-
tion line, then the segment was recognised as ‘J’ (see Fig 
12). If the intersection was exactly in the middle, it was 
guessed by default as ‘L’. Since this kind of scenario was 
rare, we did not introduce any more sophisticated meth-
ods.  

(a) (b) (c)

Fig 12. Recognising ‘L’ and ‘J’. (a) A segmented chal-
lenge. (b) The 2nd segment was normalised and successfully 
recognised as ‘L’. (c) The 5th segment was normalised and 

successfully recognised as ‘J’. 

We do not claim that the above algorithms are generic, 
but they turned out to be effective in our attacks. In fact, 
geometric characteristics between ‘P’ and ‘V’, ‘O’ and 
‘K’, and ‘L’ and ‘J’ vary so much that , when necessary, it 
is almost always possible to develop more sophisticated 
geometric analysis algorithms to differentiate them. 

5.3 Results

Our attack program implemented the snake segmenta-
tion algorithm, geometric analysis, and the enhancements 
discussed in the previous section such as approximate 
table lookup, and the countermeasure for dealing with 
broken characters (but not the spelling check, which of 
course cannot help). The program achieved a success rate 
of 96% on the sample set. Another set of 100 random 
challenges was collected as a test set, and we achieved a 
success rate of 99% on this set. 

There was no completely unrecognised challenge in all 
five failure cases. At least four or five characters were 
correctly recovered in each case. Failure cases were 
mainly due to one of two reasons: 1) failure in merging 
broken letters (i.e. a segment could be combined with 
either its preceding or following neighbour), and 2) failure 
of the snake segmentation to segment connected letters. 
Below is a failure case caused by the second reason, 
where ‘WW’ could not be split. We used pixel sum 
matching to guess non-segmented letters, but this does not 
always succeed. In this case, ‘QN’ was returned as the 
result for the last segment, since it was one of the combi-
nations that had the same pixel sum as ‘WW’. 

Original Segmented   Recognised 

   YKLWQN 

When snake segmentation was applied to Scheme 1 
challenges, the results were also positive. The success rate 
on the sample set was boosted to 99% (without using a 
dictionary). The only failing case was the following.  

Original Segmented Recognised

WORSEL

An additional pixel above 'M' caused this letter to be rec-
ognised as 'W' by the approximation table lookup method, 
as 'W' was larger than 'M' just by one in terms of pixel 
count. When a dictionary was used for the spelling check 
in the last step, the success rate was increased to 100%. 
On the other hand, the success rate on the test set was also 
100% (without using a dictionary). 

6 Attacks on Schemes 3 & 4 

In Scheme 3 (number_puzzle_text_image), a challenge 
is a distorted image of a random number. By analysing 
100 samples we collected, we made the following obser-
vations of the characteristics of Scheme 3. 

As with the previous two schemes, only two col-
ours were used in each challenge, one for back-
ground and another for foreground, i.e., the dis-
torted challenge text. 
Each challenge used only numbers, which con-
sisted of 1~7 digits. The average number of digits 
per challenge was 2.9. 
The height of each challenge image was fixed, but 
its width increased proportionally to the number 
of digits used. 

d > 14 pixels 
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Only seven digits were used: ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, 
‘6’, and ‘9’. ‘0’ occurred most often. All this 
might seem to be surprising, but a convincing ex-
planation was suggested by a colleague [ 23] that 
‘5’, ‘7’ and ‘8’ are omitted for sound usability 
reasons: 5 is very hard to tell apart from 6, 7 is 
written differently in different countries and often 
what looks like a 7 may in fact be a 1, and 8 can 
look like 6 or 9. 
Not many digits in a challenge overlapped or 
touched each other. Each challenge appeared to be 
vulnerable to either the vertical or the snake seg-
mentation attack.  
A one-to-one mapping between a digit and its 
pixel count was established in Table 3.  

Digit Pixel Count 
0 234 
1 109 
2 182 
3 164 
4 173 
6 181 
9 183 

Table 3. A digit-pixel count lookup table for Scheme 3 

Our attack was largely based on the lookup table and a 
segmentation algorithm. With the vertical segmentation 
algorithm, we achieved a success rate of 61% on the sam-
ple set, and 63% on a test set of another 100 random sam-
ples. With the snake segmentation algorithm, the success 
rate was boosted to 100% on both the sample and test 
sets.

In Scheme 4 (user_string_image), each challenge was 
a distorted image of a user-defined sequence, which had a 
maximum length of 15 and could include letters A-Z, a-z 
and numbers 0-9. The distortion method was the same as 
in Schemes 1-3. We observed that in this scheme, our 
lookup table in Table 2 was still valid. Among letters a-z, 
only ‘a’ and ‘y’ had the same pixel count; otherwise, each 
letter had a unique but constant pixel count. Each digit 
(from ‘0’ to ‘9’) had a unique but constant pixel count, 
and digits 0,1,2,3,4,6,9 had the same pixel counts as they 
had in Scheme 3.  

It is straightforward to apply our attacks to breaking 
Scheme 4. However, a little more effort is needed to dif-
ferentiate characters with identical pixel counts. As shown 
in Fig 13, there are more such characters than before. 
However, just as we did in the previous section, it is 
straightforward to develop simple geometric methods to 
differentiate these characters. In addition, special care 
might be needed to segment letters ‘i’ and ‘j’. But in gen-
eral, they could be treated as broken letters. 

‘J’ = ‘L’= 111 ‘W’ = ‘0’ = 234 

‘P’ = ‘V’ = 162 ‘A’ = ‘9’ = 183 

‘K’ = ‘O’ = 178 ‘U’ = ‘3’ = 164 

 ‘X’ = ‘6’ = 181 

‘F’ = ‘t’ = 133  

‘C’ = ‘e’ = 159 ‘a’=‘y’ = 158

 'H' = 'p' = 186 

 'I' = 'v' =121 ‘H’ = ‘p’ = ‘5’ = 186 

Fig13. Characters with an identical pixel count in {A-Z, a-z, 
0-9}.

We did not implement our attacks on Scheme 4, but 
we believe it is easy to achieve a similar success as in 
previous sections.  

7 Attack Speed

We implemented our attacks in Java (little effort was 
spent in optimizing the run-time of code). Each attack was 
run ten times on the test set of each scheme on a laptop 
computer with a Pentium 2.8 GHz CPU and 512MB 
RAM, and the average speed was taken, together with the 
slowest one (see Table 4). The figures in the table show 
that our attacks were efficient: it took around 20~50 ms to 
break a challenge in all the schemes.  

Time (ms) 
CAPTCHA Attacks 

Total  
samples

Success
Avg. worst 

VS + 
dictionary

100 94 5318 6485 
Scheme 1

SS 100 99 3267 3875 

Scheme 2 SS 100 99 4397 5031 

Scheme3 SS 100 99 1709 2094 

Table 4. Attack speed (“VS”: vertical segmentation; ‘SS’: 
snake segmentation). 

The snake segmentation based attack worked more 
slowly with Scheme 2 (random_letters_image) challenges 
than with those from Scheme 1 (word_image). This was 
because the speed of snake segmentation is dependent on 
the characters in an image. For example, it is much slower 
to segment letters such as 'U' and 'X', since they have 
“valley” shapes where snakes can get trapped and then 
take long time to emerge from. Our observation con-
firmed that the Scheme 2 samples we collected happened 
to have used such letters more often than the Scheme 1 
samples.  

8 Discussion

8.1  Is Captchaservice.org the only victim? 
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Fatal design mistakes made it easy for us to break all 
the four visual CAPTCHA schemes provided by 
Captchaservice.org. Mistakes exploited by our attacks 
include the following.  

It was easy to separate foreground text from 
background with an automatic program.  
The random shearing technique as implemented 
was vulnerable to simple segmentation attacks.  
Constant and (almost) unique pixel counts for 
each character often made it feasible to recognise 
a character by counting the number of foreground 
pixels in each segment.  

Many other visual CAPTCHAs used on the Internet 
are vulnerable to our attacks, since their designs have (or 
had) similar errors. We briefly discuss a few schemes as 
follows.  

Bot Check [ 18] is a popular Wordpress plug-in for 
protecting against automated blog posts. Two versions of 
this tool are available, but they generate CAPTCHA chal-
lenges in the same way. Fig 14 shows some sample chal-
lenges generated by Bot Check 1.1. In this scheme, distor-
tion mainly relies on a noisy background. However, al-
though multiple colours are used in each challenge, the 
foreground is of a single colour that is distinct from the 
background (see Fig 14b). It was straightforward to ex-
tract the challenge text, segment it and then use the pixel 
count method to decode each challenge. Our attacks have 
broken this scheme with 100% success, although most 
samples we collected were resistant to the OCR program 
we used in our experiments. 

(a) (b) 

Fig14. Bot-Check 1.1 sample challenges (a) original size; 
(b) zoom  2 

BotBlock [ 20] is another visual CAPTCHA scheme 
for blocking spam bots from auto-filling web forms. As 
showed in Fig 15 (a), random letters are used in this 
scheme, and they appear in different places in a challenge. 
A sophisticated colour management method is also intro-
duced. Backgrounds are of multiple colour blocks of ran-
dom shapes, and foreground colours also occur in the 
background. All the samples we tested were resistant to 
the OCR program we used. In our experiments, we suc-
cessfully extracted the challenge text (see Fig 15b) by 
exploiting its colour pattern -- the same colour occurs 
repetitively. Then, we applied the pixel count method. 

When necessary, geometrical analysis was also used to 
tell apart letters with identical pixel counts. Our attacks 
have successfully broken all of the 100 random samples 
we tested.

                                     (a) 

     (b) 

Fig15. (a) BotBlock sample challenges (b) Extracted chal-
lenge texts 

HumanVerify [ 21] is a simple CAPTCHA scheme 
that claims to be used by more than 1,000 sites. Fig 16a 
shows some sample challenges. It appears that this 
scheme is also vulnerable to our attacks. In a small-scale 
experiment (only 10 random samples were used), our 
program could easily get rid of the dotted lines, and re-
store characters to the form as shown in Fig 16b. Then, 
approximate pixel counting and geometrical analysis en-
abled us to decode all the samples successfully.  

(a)

       
                                       (b)

          Fig16. Human Verify sample challenges

As verified in a small-scale experiment (where 10 ran-
dom samples were used for each scheme), our attacks 
could break or aid in breaking some schemes that were 
listed at the PWNtcha site [ 9], e.g.:  

the Clubic scheme, 
the Ourcolony scheme, 
the Scode scheme ([ 19] is the vendor site)  
the lmt.lv scheme (still actively used at 
www.lmt.lv)

The Scode scheme is similar to Bot Check, except that 
multiple typefaces are used. For the last two schemes, a 
little additional effort would be needed to remove the grid 
lines in each challenge.  

8.2 Lessons
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The first lesson we have learnt is the following: a 
CAPTCHA scheme that is resistant to OCR software at-
tacks is not necessarily secure, and it could be vulnerable 
to (simple) customized attacks. Without a rigorous, inde-
pendent robustness evaluation, a CAPTCHA scheme 
might provide only a false sense of security.  

Second, segmentation methods can be critical for the 
success rate of attacks. As shown in early sections, the 
snake segmentation has contributed much more to the 
success rate than the vertical segmentation. This echoes 
an observation by Chellapilla and Simard [ 7] that most of 
their failures (of breaking CAPTCHA challenges) were 
due to incorrect segmentations. 

Scheme 4 (user_string_image), as discussed in Section 
6, could be broken with a high success rate. This implies 
that the multimodal scheme, of which Scheme 4 was a 
part, was defeated. Therefore, another lesson is: a multi-
modal CAPTCHA might support better accessibility, but 
if any mode is weak, the entire scheme could be insecure 
or even useless.  

We have also gained some new insights on the design 
of visual CAPTCHA schemes that can be of generic inter-
est. First, for each of the visual schemes provided by 
Captchaservice.org, it was a useless design decision to 
allow the program to pick two different colours randomly 
for a challenge. Such a design would not introduce any 
advantage over a fixed two-colour scheme. Instead, it 
could cause serious usability problems for colour-blind 
people.  

Interestingly, using multiple colours in a CAPTCHA 
scheme does not necessarily make it harder to extract the 
distorted text or increase the robustness of the scheme in 
some other way. Bot Check and BotBlock are two good 
examples. Another example is the well known Gimpy-r 
scheme: the dominant colour of distorted texts in each 
challenge always had the lowest intensity amongst all 
colours used in the challenge, and this colour (often 
black) never appeared in the background. This made it 
easy to extract the challenge text, and the colourful back-
ground was useless most of the time – rather, its negative 
side effect is obvious: it confuses people and decreases 
the usability of the scheme. 

Next, although lexical information (English words in 
our case) made Scheme 1 (word_image) vulnerable to 
dictionary attacks, and the failure of vertical segmentation 
was significantly compensated for by the dictionary at-
tacks, it is not necessarily a design mistake to make use of 
words. The reason is simple: one of our attacks has 
achieved a better success rate on the same scheme without 
using any dictionary. We are not convinced that it is abso-
lutely a bad idea to make use of lexical information in 
CAPTCHA schemes. Instead, lexical information can 
improve the usability of a visual CAPTCHA scheme. For 
example, it might be difficult for people to recognise in-
dividual characters that were distorted too much. But 
when these characters occurred as part of a word in a 

challenge, people could easily solve the challenge using 
the lexical context, as suggested by Gestalt psychology 
[ 3] (i.e., humans are good at inferring whole pictures from 
only partial information). What really matters is how to 
make use of lexical information properly in CAPTCHAs. 
Some obvious thoughts to this end include the following: 
the dictionary should be large enough; when embedded 
into challenges, all words should be randomly picked, 
and, more importantly, the distortion method used should 
be resistant to segmentation attacks.  

8.3 Defence 

Simple methods that can defeat our attacks (but not 
necessarily other types of attacks) include the following. 

Make it hard to separate the text from the back-
ground, e.g. by using multiple colours for both fore-
ground and background and leaving no pattern that 
could be used to distinguish foreground automati-
cally, and including some foreground colours into the 
background and vice versa. 
Make it hard to segment each image, e.g. by having 
characters connected or overlapped with each other, 
by adding more cracks in each character, and by add-
ing distortion such as drawing arcs above the chal-
lenge (note that arcs would be useless unless they 
share some or all of the foreground colours). 
Make it impossible to distinguish a character by 
counting its pixels. For example, all characters have 
the same pixel count all the time. Or a character can 
have very different pixel counts in different chal-
lenges (if the difference is not large enough, then 
probably an approximation method could be used to 
tell each character).  

9 Conclusions

We have exploited fatal design mistakes to develop 
simple attacks that could break, with near 100% success, 
four visual CAPTCHA schemes (including one visual 
component of a multimodal scheme) provided by 
Captchaservice.org -- these schemes all employed sophis-
ticated distortions, and they were effectively resistant to 
OCR software attacks and appeared to be secure.  

It is alarming that we have also found that many other 
visual CAPTCHAs deployed on the Internet made similar 
mistakes, and thus could be effectively broken by our 
simple attacks. The major reasons that we suspect can 
explain this scale of failure are the following. Although a 
few pioneering efforts shed some light on how to design 
visual CAPTCHAs, our collective understanding of this 
topic is still in its infancy. There were a few design guide-
lines and rules of thumb scattered in the literature, but 
many more are yet to be identified. Neither is there a sys-
tematic method for verifying whether a CAPTCHA is 
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indeed robust. Otherwise, the fatal design mistakes identi-
fied in this paper might have been easily avoided. There-
fore, our paper calls for further research into the design of 
practically secure and robust CAPTCHA schemes, a rela-
tively new but important topic, and in particular into es-
tablishing both a robustness evaluation method and a 
comprehensive set of design guidelines – the latter can 
include, for example, what should be included or avoided 
in CAPTCHA design, as well as what could be used. 

For the same reason as speculated above, many of to-
day’s CAPTCHAs are likely only to provide a false sense 
of security. We expect that systematically breaking repre-
sentative schemes will generate convincing evidence and, 
as demonstrated by this paper, establish valuable insights 
that will benefit the design of the next generation of ro-
bust and usable CAPTCHAs.  
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