
Abstract
CAPTCHA has been widely deployed by commer-
cial web sites as a security technology for purposes
such as anti-spam. A common approach to evaluat-
ing the robustness of CAPTCHA is the use of ma-
chine learning techniques. Critical to this approach
is the acquisition of an adequate set of labeled sam-
ples, on which the learning techniques are trained.
However, such a sample labeling task is difficult
for computers, since the strength of CAPTCHAs
stems exactly from the difficulty computers have in
recognizing either distorted texts or image con-
tents. Therefore, until now, researchers have to
manually label their samples, which is tedious and
expensive. In this paper, we present Magic Bullet, a
computer game that for the first time turns such
sample labeling into a fun experience, and that
achieves a labeling accuracy of as high as 98% for
free. The game leverages human computation to
address a task that cannot be easily automated, and
it effectively streamlines the evaluation of
CAPTCHAs. The game can also be used for other
constructive purposes such as 1) developing better
machine learning algorithms for handwriting rec-
ognition, and 2) training people’s typing skills.

1 Introduction
A CAPTCHA (Completely Automated Public Turing Test
to Tell Computers and Humans Apart) is a program that
generates and grades tests that are solvable by humans, but
intended to be beyond the capabilities of current computer
programs [von Ahn et al., 2004]. This technology is now
almost a standard security mechanism for defending against
undesirable or malicious Internet bot programs, such as
those spreading junk emails and those grabbing thousands
of free email accounts instantly. It has found widespread
application on numerous commercial web sites. The most
widely used CAPTCHAs are text-based schemes, which
typically require users to solve a text recognition task.
Google, Microsoft and Yahoo have all deployed their own
text CAPTCHAs for years to defend against email spam.

Spammers could achieve substantial financial gain by us-
ing computer programs that can automatically bypass a
heavily used CAPTCHA such as those deployed by Google,

Microsoft and Yahoo. Therefore, it is both intellectually
interesting and practically relevant for researchers to under-
stand and improve the robustness of CAPTCHAs, in order
to try to stay (at least) a step ahead of spammers.

The typical method for evaluating whether or not a
CAPTCHA scheme is robust is to try to attack or break the
scheme, in the sense of writing a computer program that can
automatically answer the tests generated by the scheme. A
well-established method for attacking text CAPTCHAs
[Chellapilla and Simard, 2004] is based on machine learning
and typically includes the following steps.

Segmentation: locating where the characters are in each
CAPTCHA challenge. Figure 1(1) shows an original chal-
lenge image, and (2) shows the image after segmentation,
where eight valid characters were successfully located in the
right order with each displayed in a different color (and
most non-character lines removed).

(1) (2)

Figure 1. Segmentation. (1) A sample CAPTCHA challenge, (2)
after segmentation, eight characters were identified. (Taken from

[Yan and El Ahmad, 2008])

Segment Label Segment Label

X

5

T

Y

N

R

M

E

Figure 2. Sample labeling: labeling each segment with the right
character.

Recognition: using machine learning to recognize each
segmented character. Key steps include 1) labeling each
segment with the right character (see Figure 2), and 2) train-
ing a recognition engine (e.g. a convolutional neural net-
work [Simard et al., 2003]) using a large number of the la-

Streamlining Attacks on CAPTCHAs with a Computer Game

Jeff Yan, Su-Yang Yu
School of Computing Science
Newcastle University, England
{jeff.yan, s.y.yu}@ncl.ac.uk

beled segments (or “samples” in generic terms). In simple
terms, the engine needs to be told what images represent an
‘a’, what images represent a ‘b’ and so on. Then, the trained
engine can be used to recognize unlabeled character seg-
ments.

To fully evaluate the robustness of a CAPTCHA scheme,
typically at least ten thousand segments have to be labeled
[Chellapilla and Simard, 2004]. Since the strength of such
CAPTCHA relies on the difficulty of computers to under-
stand and decode distorted texts, sample labeling cannot be
automated. Instead, each sample has to be manually la-
beled, which is tedious and expensive.

In this paper, we show that Magic Bullet (MB), a com-
puter game, can turn the labeling of distorted characters,
which would otherwise be tedious for humans and difficult
for computers, into a fun experience. MB is a dual-purposed
game, serving two purposes simultaneously: 1) like in any
games, people play the game just for fun, and 2) although
players might not realize it at all, their game play contrib-
utes to solving a real problem that has practical utilities but
to which the current state of the art does not have a solution.
 The structure of this paper is as follows. Section 2 de-
scribes the design of the game. Section 3 discusses its im-
plementation and other details. Section 4 evaluates the fun
level of the game, the accuracy and throughput of data pro-
duced by the game. Section 5 shows additional applications
of the game. Section 6 compares the game and related work.
Section 7 concludes the paper.

2 General Description of the Game
Magic Bullet is an online multi-player shooting game. In a
typical setting, it is a four-player game in which two teams
compete against each other, with two players in each team.
The players are chosen and assigned randomly; they are not
told who the other participants in their games are, nor are
they provided with any means of communicating with each
other.
 All of the players will share the view of the same gam-
ing area, a screen with two targets - one is for their team and
the other for their opponents’ team (see Figure 3). Each
game session consists of an arbitrary number of rounds.
During each round, a randomly chosen character image
(which is typically a segmented CAPTCHA character, e.g.
“M” in Fig 1) is shown to all four players. This image will
become a bullet, starting off in a stationary position an equal
distance away from the two targets. The team who shoots
the bullet to hit their target wins the current round of the
game.

The key game rules are as follows.
• To trigger the bullet’s initial movement: the first

player to hit any key on his/her keyboard will get the
character image to become a bullet, moving slowly
towards their target.

• To get the bullet to hit their target:
o Both players in the team must type the same key

for that bullet, i.e. they have to reach an agreement

about the image. Note: the players are not required
to type the key at the same time, but each must
type the same key at some point while the image is
on the screen. For example, for a character image
resembling ‘q’, it is a valid match if one player has
typed a sequence of ‘g’, ‘o’ and ‘q’ and his or her
partner types a ‘q’.

o If both teams have reached an agreement, the team
that managed to reach their agreement first wins -
the bullet would zoom across the gaming area to
hit their target, and score points for this team.

Team 1 target Team 2 target

Figure 3. At the beginning of each game round

 The movement of the bullet can drastically change as if
by magic – for example, the bullet starts to move towards
the target of the team that hit a key first. But if the other
team reaches an agreement first, the bullet will change its
direction to hit the winning team’s target - hence the name
“Magic Bullet”.
 If after 10 seconds since the starting of the round neither
team were able to reach an agreement, the bullet would ex-
plode and neither team gets any points.
 When a “bullet” has either hit a target or exploded, it
signifies the end of one round. The session would then gen-
erate a new round with a different randomly chosen “bul-
let”, and this cycle will continue until the 2 minutes time
limit of each session. By then the final scores of both teams
will be compared and the players will be informed if they
have won or lost that session.
 Security techniques are applied to make sure that players
in the same game are geographically apart so that the likeli-
hood of cheating will be dramatically reduced. The only
honest way of wining the game is for each player to decide
which character they think that “bullet” resembles the most,
and press the corresponding key on their keyboards.
 To have more likelihood of winning, the players will
need to be both fast and accurate when they type. First, a
team will get points only if they could agree before their
opponents do. Therefore, the players must type quickly and

accurately. Sending in multiple randomly chosen keys is not
an optimal way of playing. In fact, the fastest scenario for a
team to reach an agreement is when the first keys they both
send are a match. Moreover the faster the players can com-
plete each round, the more rounds they will be able to play
in that session, and thus the potential score they could get is
higher.
 As such, while people play the game of collaborative
shooting, they also label each image with the correct charac-
ter. The labeled images are useful output produced by the
game.

3 Implementation and Other Details
MB is designed as a web-based game so that people can
conveniently have access to it online. It is implemented with
the Google Web Toolkit (GWT). GWT allows developers to
write their application in Java, but then compiles it into op-
timized JavaScript for deployment. Since all major browsers
support JavaScript by default, end-users do not have to in-
stall anything on their computers before they can play the
game. On the contrary, if the game is implemented as a Java
applet, users might have to install an appropriate Java Vir-
tual Machine before they can play the game.

3.1 Cheating
Since the game relies on the team members collaborating in
order to produce any useful data, cheating becomes a sig-
nificant concern. This is because the players could also be
collaborating for malicious purposes.

One example of cheating is when both members on the
same team have previously agreed upon the use of a single
key for all their answers. As a result, no matter which seg-
ments show up in their games, they will always be labeling
it with the same character. This form of cheating will be
very effective, because, since the cheaters have pre-empted
the answers, they will no longer need to spend any addi-
tional time used in recognition. Therefore, their response
times will generally be much quicker than the legitimate
players of similar levels, and thus allowing them to win
more often and attain higher scores.
 To prevent this type of cheating, no communication
should be allowed between the partners. We adopt the fol-
lowing cheating-prevention methods - some are taken from
[Yan, 2003; von Ahn and Dabbish, 2004].
• Player queuing and random pairing: players who log

on at the same or similar time will not necessarily be
paired together.

• IP address checks: to make sure that players are not
paired with themselves or with people who have a
similar address.

• Trap. Some images are manually labeled and will be
used as trap at a random interval. If players keep get-
ting the trap images wrong then they will get flagged
as cheaters and black listed, all data from them will
be discarded.

• Keyboard hamming detection: This involves counting
the number of unique inputs by a player. If it is over

a threshold (e.g. 5) then the player is most likely ran-
domly pressing keys.

3.2 Case sensitivity
Most CAPTCHA schemes known to us use only a single
case of letters, for example, the Microsoft scheme [Yan and
El Ahmad, 2008] used capital letters, and the Gimpy-r and
Google CAPTCHAs used lower-case letters. For these
schemes, case sensitivity of the labels we collect is not an
issue, since we can simply convert the collected labels into
the correct cases before we use them.

A very limited number of CAPTCHAs (including two re-
cent schemes deployed by Yahoo) used both cases of letters,
although this is not necessarily a good design choice. For
these schemes, it appears that a player’s input should be
case sensitive in the game, in order to obtain accurate labels.

However, for both of the above scenarios, we prefer to
have case insensitive input and so encourage players to use
lower-case letters, for the following reasons: 1) it is more
convenient for players to input lower-case letters than up-
per-case ones, and therefore more fun for them to play the
game; 2) it is difficult, and sometimes even impossible, to
tell whether a letter as distorted in CAPTCHA is in upper or
lower case; examples include letters such as Cc, Kk, Oo, Pp,
Ss, Uu, Vv, Ww, Xx, and Zz; 3) because of reason 2, the
schemes using both cases of letters are in fact typically case
insensitive, that is, answers to a CAPTCHA challenge are
case insensitive. Therefore, labeling a letter with its opposite
case does not really matter much in terms of the impact on
the accuracy of the trained engine – this is true in particular
for letters such as Cc, Kk, Oo, Pp, Ss, Uu, Vv, Ww, Xx,
and Zz. For other letters such as Aa, Bb and Dd, even if ac-
curate cases are required for their labels, it is a simple task.
For example, when the letter is known, a simple geometrical
analysis will tell whether it is in lower or upper case.

3.3 Bot
When there are not enough human players, our system will
automatically enable bots to play with waiting people. There
are two types of bots in our design: 1) a bot that simply re-
plays data from old games (we call this a Data Replay Bot
or DRB for short), and 2) a bot that performs actions at re-
sponse times tailored to an opponent team’s performance
(we call this a Tailored Response Bot or TRB for short).

DRB is used to simulate a player’s partner; it would sim-
ply fetch an existing label of a segment and set the label as
the answer. All the player has to do is to input the same key
as that label to reach an agreement.

A single TRB participates in a game as a team by itself,
and it never has to decide which letter to press. Whether or
not the TRB team reaches an agreement on an image is en-
tirely the result of flipping a biased coin. Typically, a TRB
monitors response times of its opponent team in previous
rounds of the current game session, and generates some re-
sponse times for its own team around those of the opponent
team (or uses predefined values at the beginning of a ses-
sion). At these intervals, TRB will flip a biased coin, with
the result being either an agreement being reached or not.

The bias of the coin depends on the scores of the current
game session; it will be more in favor of the TRB if the op-
ponent team is winning and less otherwise. The purpose is
to keep the TRB’s score around that of its opponent team,
this way the stronger player(s) in the opponent team can be
pushed to test their abilities and the weaker player(s) would
not feel too overwhelmed.

With these two types of bots, we can create the following
bot game types: i). Human player & DRB vs. TRB. This
game type can be used to either verify the correctness of the
labels, or detect cheaters. ii). Human player & Human
player vs. TRB. This game type is used to collect new la-
bels when there are only two human players.

Although it is also possible to make Player & Player vs.
Player & DRB game types, it would serve us no useful pur-
pose. For instance, if new segments are used then the DRB
cannot supply an answer thus making the game unfair. But
if only labeled segments are used, then we are not utilizing
the available players who could be labeling new segments.

Due to the fact that the players were not foretold who
their partner or opponents are, it will not be apparent that
they are actually playing against a bot. As a result the play-
ers would not get “the computer is cheating” feeling if they
do lose the game.

3.4 Extensions
We have created a high score ranking list. In future imple-
mentations, we will also support player skill levels, so if a
player scores above a number of points they go up a level.
Both of these will encourage players to keep aiming for
higher scores, and give the game even better replay value.
 The team playing element could be extended in two dif-
ferent directions, either by increasing the number of players
per team, or by increasing the number of teams. Of course it
is also possible to increase both at the same time. The game
rules would stay more or less the same; all of the players on
the same team must reach an agreement before all other
opposing teams in order to score points. With the multi-
team extension it is also possible to have a hierarchical
points system, to award points by the order of the teams
reaching their agreements (e.g. 200 for first place, 100 for
second, 50 for third… etc).
 The principle of the game could also be applied to create
other forms of collaborative shooting games (e.g. tank
shooting and darts). There is, clearly, great scope to use
graphics and audio effects creatively to present the game in
the most appealing way.

4 Evaluation
Our evaluation includes two parts. First, we show that the
game is indeed enjoyable. Second, we show the accuracy
and throughput of the data produced by the game.

Since our game has not been formally released to the pub-
lic, we carried out an evaluation with a pilot study. We re-
cruited 26 volunteers (20 male and 6 female; 20 with a tech-
nical background and 6 with a non-technical background).

They were in the age range of 20-30, and an informed con-
sent was obtained from them.

The character segments used in our game were from well-
known CAPTCHAs such as those used by Microsoft, Yahoo
and Google, and the Gimpy-r scheme. The segments were
produced by automated programs written by us.

4.1 The level of fun
We used a questionnaire to survey the level of fun that

the players experienced when playing the MB game. Table
1 shows the average rating (on a five point scale) to ques-
tions related to the enjoyability of the game.

Rating

Question Total
responses mean std

dev
% at 4 or

above
Did you find the game

fun to play? a
25 3.60 0.71 56

Did you like playing
with your partner? b * 25 3.40 0.87 48

Are you likely to play
this game again? c

25 3.36 0.95 44

Table 1. How enjoyable is Magic Bullet? Average rating on the
scale of 1 to 5, provided by 25 players who filled in the survey
after playing the game. Higher scores are better.
a 1=No fun at all, 2=not much fun, 3=average, 4=some good fun,
and 5=extremely fun
b 1=strongly disagree, 2= somewhat disagree, 3= neither agree or
disagree, 4= somewhat agree, and 5= strongly agree
c 1= highly unlikely, 2= unlikely, 3=maybe, 4= very likely, and
5=definitely
*Bots were disabled in order to measure this fun element.

To give a further idea for how much the players enjoyed
the game, we include below some quotes taken from com-
ments submitted by players in the survey.

“The competition aspect was very good as was the un-
known ‘enemy’. - Having leader boards is a nice touch
to increase the competitive nature and repeat plays.”

“Identifying the characters and to get it correct as much
as possible is really fun. Knowing you win motivates
you to play again and again ;-)”

“Being competitive is fun; you're trying to reach the
letters before the other team. It creates a decent, active
pace.”

“(The main fun elements include) 'trying to recognise
what I think the letter/number is and hoping that my
partner looks at it the same way I do and also trying to
be fast enough recognise it and type it in. I made lots of
mistakes but it was fun. ”

4.2 Data quality and throughput
Label accuracy
In our study, 45 game sessions (including incomplete ones)
were played, in which in total of 1852 sample images were

used. A manual inspection shows that 1798 images were
correctly labeled, giving an accuracy rate of 97.1%.

We examined all the failure cases, and identified three
types of labeling errors (see Table 2). Type 1 errors have
occurred as the segments are simply unreadable for human
eyes. Type 2 errors were due to confusing characters that the
players misjudged. Type 3 errors seem strange, but were
identified as the result of a bug in our game prototype: a
player’s late reaction to an image displayed for the current
round was sometimes mistakenly taken as input to the next
round. With the bug fixed, this type of errors was no longer
observed.

Therefore, only type 2 errors represent labels that were
incorrectly labeled by the game. Consequently, the accuracy
rate achieved by the game should be calculated as: (1798 +
#bug)/(1852 - #impossible) = 98.4%,where #bug is the
number of type 3 errors (=10) and #impossible the number
of type 1 errors (=14).

 Image Actual text Label by MB*

1(I)s(5)? 1

Type 1
error

IJ (?) N

U t Type 2

error Y K

C q Type 3

error 2 g

Table 2. Three types of labeling errors (*generated as in a single
session)

Automatic detection of problematic samples
By using the same set of samples in multiple game sessions,
characters that would cause type 1 or 2 error can be auto-
matically identified by our game. The idea is simple: differ-
ent people will enter different inputs for the same character
– letting the character explode is equivalent to enter an
empty label – therefore, the existence of different labels for
a sample image implies such a sample is problematic. In this
way, wrong labels will be prevented from being used to
train the recognition engine.

Throughput
On average, a single game session produced 25 (std
dev=9.2) correct labels per minute, giving 1,500 labels per
human hour. This rate of labeling does not seem to be par-
ticularly fast, but it can be explained as follows. First, some
players were not touch typists so they typed slowly. Second,
the labeling process was delayed by the images that no one
could decode. Third, some players were not familiar with
the game so their pace of play was slow.

However, when players get familiar with the game or typ-
ing, the labeling rate will be improved. More importantly,

the game supports a large number (denoted by n) of parallel
sessions. The throughout of the game can be quickly scaled
by a factor n, which is constrained only by the network
bandwidth and the game server’s CPU and memory.

5 Application
Building better algorithms for handwriting recognition
When an algorithm for handwriting recognition is devel-
oped, it is routine to segment cursive texts and then manu-
ally label character samples. MB can replace such a manu-
ally intensive and laborious labeling process, and thus speed
up the test and development of the algorithm.

A tool for training typing skills
Fast keyboard typing is key to winning the MB game. An-
ecdotal evidence shows that some people were beaten in
MB not because they could not recognize the displayed
characters fast enough, but because it took them longer to
type the right key – for example, some of them had to look
for the right key on their keyboard, while their opponents
who had better keyboard skills could hit the right key with-
out paying any attention to their keyboard. As such, MB can
be a training tool to improve people’s keyboard skills. An-
other way of looking at MB is that it is a typing game, in
which an element of CAPTCHA is combined into.

Binary labeling
For some applications, two types of objects are required to
be labeled respectively. For example, to evaluate the robust-
ness of a CAPTCHA that requires people to tell whether an
image is cat or dog, 13,000 sample images had to be manu-
ally labeled according to the content of the image [Golle
2008]. This is an example of binary labeling, and it cannot
be automated by the state of the art of image recognition,
which works poorly in recognizing cat and dog in the im-
ages – otherwise the CAPTCHA would have no reason to
exist at all. However, MB can be extended to provide an
effective human computation solution to this problem. The
details of such an extension are discussed in a forthcoming
paper.

6 Related Work
Our work is inspired by the ESP game [von Ahn and Dab-
bish, 2004], which pairs two randomly selected online play-
ers to create labels for images on the Web. Designed to im-
prove the quality of image search, the ESP game worked
well to label some content-rich images. But it would per-
form poorly at solving the problem that Magic Bullet is de-
signed to resolve, for the following simple reason: it would
be boring for people to play the ESP game when the images
to be labeled contain only a single character.

A major fun element of the ESP game in our view stems
from the fact that you have to try and guess how other peo-
ple think. Typically, agreeing on an appropriate name for an
image in the game creates an enjoyable feeling of “extra-
sensory perception” about each other within a partnership:
“hey, I read your mind!” This fun element is highly depend-

ent on the choice of images used. Not much is known about
exactly what kind of images are the most suitable for the
ESP game – the present paper is the first discussion on this
issue. This is probably why an option is provided in the ESP
game to allow players to skip images that they find hard to
agree on with their partners.

In our view, to maintain a reasonable level of enjoyment,
images used in the ESP game must satisfy the following
condition: the search space for labels of each image should
be neither too big nor too small for two players to reach an
agreement. For example, if the image to be labeled is as
large as a 17” computer screen and contains tens of thou-
sands of objects, then it is highly likely that two players will
never agree with each other although each of them might
have already entered hundreds of words to describe the im-
age. On the other hand, if an image implies only a single
possible label, it will be trivial for two players to reach an
agreement. In both cases, the enjoyment from the ESP effect
of “reading each other’s mind” will quickly diminish. That
is, being either too easy or too difficult to agree on an image
is not good. This can also be explained by a common prin-
ciple of making a game fun to play: it is essential (although
tricky) to make sure that the difficulty level is right.

Since the ESP game supports taboo words, theoretically
we can increase the difficulty of single character images by
adding the obvious descriptions to the taboo list. However,
this may be a step jump in difficulty from too easy to too
hard. On the other hand, only the “obvious descriptions” are
the labels that we want.

On the contrary, people can have considerable fun in MB
by labeling a single character. The fun aspect that is lost
because of the weaker level of enjoyment from the ESP ef-
fect in the MB game is compensated by other fun elements.
For example, a player commented in the survey that “the
slightly more interactive nature of this game (vs. something
like Google Image Labeler) made it slightly more entertain-
ing”. Our empirical data also appears to suggest that MB has
got its difficulty level right and thus is fun to play.

Moreover, the ESP game is of limited attractiveness to
people who are not fluent in English, since they find it diffi-
cult to figure out the right words to describe the images, or
perhaps simply cannot play the game at all. Anecdotal evi-
dence suggests that some non-native English speakers found
that the words on the taboo list were all that they could fig-
ure out, thus finding it very frustrating to play the game. On
the contrary, what is required in MB is just the capability of
reading individual Roman characters, which is almost a uni-
versal skill. Therefore, for this category of players, MB is
much more enjoyable than the ESP game.

Other differences between the ESP game and MB include
the following.

1) ESP is a two-player game, while MB is designed for
at least four players.

2) ESP is a cooperative game in which the players are
partners working together to obtain points. There is a
high score table in the ESP game, so you can com-
pete, but not with your playing partner. On the other
hand, MB is a competitive game in which two teams

play against each other, and the points earned by one
team are the points lost by the other.

3) ESP can be extended in the way the MB is played (,
but not vice versa, as discussed earlier). For example,
in such an extended ESP game, four players can be
divided into two teams. Each team tries to label the
same image and the team who first reaches consen-
sus wins points. Such an extended version will be a
team-based competitive game, which is likely of
more fun than the original game due to the new com-
petitive aspect.

7 Conclusions
In this paper, we have for the first time identified a number
of labeling problems that the famous ESP game would fail
to address. We have also designed our own game, Magic
Bullet, as the first effective solution to the identified prob-
lems, which no known computer algorithm can yet solve.

When human computation is used to generate or process
data, there is a risk of error. This is confounded in a game
setting where players may not be motivated to be careful, or
even cheat. However, our empirical evaluation shows that
the data generated from our game can be highly accurate.

Acknowledgments
Ahmad El Ahmad deserves a big “thank you” from us for
providing CAPTCHA segments and other support. We are
grateful for helpful comments from Brian Randell, Sacha
Brostoff, Yongdong Wu, Xuhong Xiao and anonymous re-
viewers. We also thank all participants of our study.

References
[Chellapilla and Simard, 2004] K Chellapilla and P Simard, “Using

Machine Learning to Break Visual Human Interaction Proofs”,
NIPS, MIT Press, 2004.

[Golle 2008] Philippe Golle. “Machine learning attacks against the
Asirra CAPTCHA”, CCS 2008, ACM Press. pp535-542.

[Simard et al., 2003] P Simard, D Steinkraus, J Platt. “Best practice
for convolutional neural networks applied to visual document
analysis”, ICDAR 2003, pp.958-962.

[von Ahn and Dabbish, 2004] Luis von Ahn and Lora Dabbish,
“Labeling Images with a Computer Game”, CHI 2004, ACM
Press. pp319-326.

[von Ahn et al., 2004] L von Ahn, M Blum and J Langford. “Tell-
ing Humans and Computer Apart Automatically”, CACM,
V47, No2, 2004.

[Yan 2003] Jeff Yan. “Security Design in Online Games”. ACSAC
2003, IEEE Computer Society, pp286-295.

[Yan and El Ahmad, 2008] Jeff Yan and Ahmad S El Ahmad. “A
Low-cost Attack on a Microsoft CAPTCHA”, CCS 2008,
ACM Press. pp 543-554.

